Advertisement

Microchimica Acta

, 185:549 | Cite as

Voltammetric determination of the Alzheimer’s disease-related ApoE 4 gene from unamplified genomic DNA extracts by ferrocene-capped gold nanoparticles

  • Hanwen Lu
  • Ling Wu
  • Jingrui Wang
  • Zixiao Wang
  • Xinyao YiEmail author
  • Jianxiu Wang
  • Nan WangEmail author
Original Paper

Abstract

A sensitive method is described for detection of the apoE 4 gene detection which is important for early diagnosis of Alzheimer’s disease. It is based on signal amplification by using ferrocene (Fc) capped gold nanoparticles modified with streptavidin. The immobilized oligonucleotide probe captures complementary apoE 4 gene. This is followed by the specific recognition of the GCGC sequences which are hydrolyzed by the restriction enzyme HhaI. Cleavage only occurs at the complementary apoE 4 duplex, while mismatches prevent enzymatic cleavage. Thus, the apoE 4 sequence can be discriminated against other apoE sequences. Benefitting from amplified signal by Fc-capped nanoparticle/streptavidin and the recognition of HhaI, the detection limit is as low as 0.1 pM of the ApoE 4 gene. Four genomic DNA samples extracted from blood were analyzed for the presence of the apoE 4 gene. The approach presented here will provide viable proof-of-principle for an enzyme-assisted electrochemical assay for the apoE 4 gene in genomic DNAs.

Graphical abstract

Schematic presentation of amplified voltammetric detection of Alzheimer’s Disease-related apoE 4 gene from unamplified genomic DNA extracts via ferrocene capped gold nanoparticle/streptavidin.

Keywords

ApoE 4 gene Restriction enzyme HhaI Cyclic voltammetry DNA extract Biosensor 

Notes

Acknowledgments

The authors thank the financial support of this work by the National Natural Science Foundation of China (Nos. 21876208, 21705166, 21575166).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

References

  1. 1.
    Hardy J, Selkoe DJ (2002) Medicine-the amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297(5580):353–356CrossRefGoogle Scholar
  2. 2.
    Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766CrossRefGoogle Scholar
  3. 3.
    Liu L, He Q, Zhao F, Xia N, Liu H, Li S, Liu R, Zhang H (2014) Competitive electrochemical immunoassay for detection of beta-amyloid (1-42) and total beta-amyloid peptides using p-aminophenol redox cycling. Biosens Bioelectron 51:208–212CrossRefGoogle Scholar
  4. 4.
    Xia N, Wang X, Yu J, Wu Y, Cheng S, Xing Y, Liu L (2017) Design of electrochemical biosensors with peptide probes as the receptors of targets and the inducers of gold nanoparticles assembly on electrode surface. Sensors Actuators B Chem 239:834–840CrossRefGoogle Scholar
  5. 5.
    Xia N, Wang X, Zhou B, Wu Y, Mao W, Liu L (2016) Electrochemical detection of amyloid-beta oligomers based on the signal amplification of a network of silver nanoparticles. ACS Appl Mater Interfaces 8(30):19303–19311CrossRefGoogle Scholar
  6. 6.
    Xia N, Zhou B, Huang N, Jiang M, Zhang J, Liu L (2016) Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens Bioelectron 85:625–632CrossRefGoogle Scholar
  7. 7.
    Adams H, Swanson SA, Hofman A, Ikram MA (2016) Amyloid-beta transmission or unexamined bias? Nature 537(7620):E7–E8CrossRefGoogle Scholar
  8. 8.
    Bu G (2009) Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10(5):333–344PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Liu Y, Xu L-P, Wang S, Yang W, Wen Y, Zhang X (2015) An ultrasensitive electrochemical immunosensor for apolipoprotein E4 based on fractal nanostructures and enzyme amplification. Biosens Bioelectron 71:396–400CrossRefGoogle Scholar
  10. 10.
    Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, Joo SH, Rosi BL, Gusella JF, Crapper-MacLachlan DR, Alberts MJ (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43(8):1467–1472CrossRefGoogle Scholar
  11. 11.
    Pantelidis P, Lambert-Hammill M, Wierzbicki AS (2003) Simple sequence-specific-primer-PCR method to identify the three main apolipoprotein E haplotypes. Clin Chem 49(11):1945–1948CrossRefGoogle Scholar
  12. 12.
    Gaster J, Rangam G, Marx A (2007) Increased single nucleotide discrimination in arrayed primer elongation by 4 ' C-modified primer probes. Chem Commun (17):1692–1694Google Scholar
  13. 13.
    Wegner GJ, Wark AW, Lee HJ, Codner E, Saeki T, Fang SP, Corn RM (2004) Real-time surface plasmon resonance imaging measurements for the multiplexed determination of protein adsorption/desorption kinetics and surface enzymatic reactions on peptide microarrays. Anal Chem 76(19):5677–5684CrossRefGoogle Scholar
  14. 14.
    Li QG, Luan GY, Guo QP, Liang JX (2002) A new class of homogeneous nucleic acid probes based on specific displacement hybridization. Nucleic Acids Res 30(2):5e–55Google Scholar
  15. 15.
    Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31(3):545–548Google Scholar
  16. 16.
    Jung YK, Kim J, Mathies RA (2015) Microfluidic linear hydrogel array for multiplexed single nucleotide polymorphism (SNP) detection. Anal Chem 87(6):3165–3170CrossRefGoogle Scholar
  17. 17.
    Bao YP, Huber M, Wei TF, Marla SS, Storhoff JJ, Muller UR (2005) SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res 33(2):e15PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Simpson JE, Ince PG, Shaw PJ, Heath PR, Raman R, Garwood CJ, Gelsthorpe C, Baxter L, Forster G, Matthews FE, Brayne C, Wharton SB, Function MRCC, Ageing Neuropathology Study G (2011) Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer's pathology and APOE genotype. Neurobiol Aging 32(10):1795–1807CrossRefGoogle Scholar
  19. 19.
    Zhong L, Xie YZ, Cao TT, Wang Z, Wang T, Li X, Shen RC, Xu H, Bu G, Chen XF (2016) A rapid and cost-effective method for genotyping apolipoprotein E gene polymorphism. Mol Neurodegener 11:2PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chen Y, Shortreed MR, Olivier M, Smith LM (2005) Parallel single nucleotide polymorphism genotyping by surface invasive cleavage with universal detection. Anal Chem 77(8):2400–2405CrossRefGoogle Scholar
  21. 21.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: foudamentals and applications. Wiley, New YorkGoogle Scholar
  22. 22.
    Shen Y, Shen G, Zhang Y (2018) Voltammetric immunoassay for alpha-fetoprotein by using a gold nanoparticle/dendrimer conjugate and a ferrocene derived ionic liquid. Microchim Acta 185(7):346CrossRefGoogle Scholar
  23. 23.
    Nie Y, Yang M, Ding Y (2018) Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Microchim Acta 185(7):331CrossRefGoogle Scholar
  24. 24.
    Ahmed MU, Idegami K, Chikae M, Kerman K, Chaumpluk P, Yamamura S, Tamiya E (2007) Electrochemical DNA biosensor using a disposable electrochemical printed (DEP) chip for the detection of SNPs from unpurified PCR amplicons. Analyst 132(5):431–438CrossRefGoogle Scholar
  25. 25.
    Guo K, Li X, Kraatz HB (2011) Exploiting the interactions of PNA-DNA films with Ni2+ ions: detection of nucleobase mismatches and electrochemical genotyping of the single-nucleotide mismatch in apoE 4 related to Alzheimer's disease. Biosens Bioelectron 27(1):187–191CrossRefGoogle Scholar
  26. 26.
    Marrazza G, Chiti G, Mascini M, Anichini M (2000) Detection of human apolipoprotein E genotypes by DNA electrochemical biosensor coupled with PCR. Clin Chem 46(1):31–37Google Scholar
  27. 27.
    Molina L, Touchon J, Herpe M, Lefranc D, Duplan L, Cristol JP, Sabatier R, Vermersch P, Pau B, Mourton-Gilles C (1999) Tau and apo E in CSF: potential aid for discriminating Alzheimer's disease from other dementias. Neuroreport 10(17):3491–3495CrossRefGoogle Scholar
  28. 28.
    Yi X, Han H, Zhang Y, Wang J, Zhang Y, Zhou F (2013) Amplified voltammetric characterization of cleavage of the biotinylated peptide by BACE1 and screening of BACE1 inhibitors. Biosens Bioelectron 50:224–228CrossRefGoogle Scholar
  29. 29.
    Wang J, Yi X, Tang H, Han H, Wu M, Zhou F (2012) Direct quantification of microRNA at low picomolar level in sera of glioma patients using a competitive hybridization followed by amplified voltammetric detection. Anal Chem 84(15):6400–6406PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lu Z, Tang H, Wu D, Xia Y, Wu M, Yi X, Li H, Wang J (2016) Amplified voltammetric detection of miRNA from serum samples of glioma patients via combination of conducting magnetic microbeads and ferrocene-capped gold nanoparticle/streptavidin conjugates. Biosens Bioelectron 86:502–507CrossRefGoogle Scholar
  31. 31.
    Wang W, Song L, Gao Q, Qi H, Zhang C (2013) Highly sensitive detection of DNA using an electrochemical DNA sensor with thionine-capped DNA/gold nanoparticle conjugates as signal tags. Electrochem Commun 34:18–21CrossRefGoogle Scholar
  32. 32.
    Meng X, Xu M, Zhu J, Yin H, Ai S (2012) Fabrication of DNA electrochemical biosensor based on gold nanoparticles, locked nucleic acid modified hairpin DNA and enzymatic signal amplification. Electrochim Acta 71:233–238CrossRefGoogle Scholar
  33. 33.
    Li F, Feng Y, Dong P, Tang B (2010) Gold nanoparticles modified electrode via a mercapto-diazoaminobenzene monolayer and its development in DNA electrochemical biosensor. Biosens Bioelectron 25(9):2084–2088CrossRefGoogle Scholar
  34. 34.
    Fan Q, Zhao J, Li H, Zhu L, Li G (2012) Exonuclease III-based and gold nanoparticle-assisted DNA detection with dual signal amplification. Biosens Bioelectron 33(1):211–215CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department oft of Obstetrics and GynecologyThe Third Xiangya Hospital of Central South UniversityChangshaPeople’s Republic of China

Personalised recommendations