Advertisement

Microchimica Acta

, 185:547 | Cite as

Immunoelectrochemical detection of the human epidermal growth factor receptor 2 (HER2) via gold nanoparticle-based rolling circle amplification

  • Congcong Shen
  • Shuping Liu
  • Xiaoqing Li
  • Dan Zhao
  • Minghui YangEmail author
Original Paper
  • 244 Downloads

Abstract

The authors describe an adapted rolling circle amplification (RCA) method for the determination of human epidermal growth factor receptor 2 (HER2). This method (which is termed immunoRCA) combines an immunoreaction with DNA based signal amplification. Gold nanoparticles (AuNPs) were loaded with antibodies against HER2 and DNA, and then fulfill the functions of recognizing HER2 and achieving signal amplification. The DNA serves as a primer to trigger RCA. This results in formation of a long DNA containing hundreds of copies of circular DNA sequence on the electrode surface. Then, molybdate is added which reacts with the phosphate group of the long DNA to generate the redox-active molybdophosphate. This, in turn, results in an increased current and, thus, in strongly increased sensitivity of the immunoassay. A linear response is linear relationship between the change of current intensity and the logarithm of the concentration in the range from 1 to 200 pg·mL−1 of HER2, and the detection limit is 90 fg·mL−1 (at an S/N ratio of 3). The method was applied to the determination of HER2 in breast cancer patients serum samples, and the results correlated well with those obtained by an ELISA. The method was further successfully applied to the determination of HER2 in HER2-expressed mouse breast cancer 4 T1 cells. Conceivably, this strategy may be adapted to other DNA amplification methods and also may be used for the determination of other proteins and biomarkers by using the appropriate antibodies.

Graphical abstract

Schematic presentation of an adapted rolling circle amplification (RCA) strategy for the electrochemical detection of human epidermal growth factor receptor 2 (HER2), termed “immunoRCA” utilizing gold nanoparticles (AuNPs). Ab stands for antibody, Phi29 is an E.coli DNA polymerase, dNTP represents deoxynucleotides, and SWV stands for square wave voltammetry.

Keywords

ImmunoRCA Rolling circle amplification Human epidermal growth factor receptor 2 Molybdate Molybdophosphate 

Notes

Acknowledgments

The authors thank the support of this work by the National Key Basic Research Program of China (2014CB744502), the National Natural Science Foundation of China (No. 21575165) and the Hunan Provincial Science and Technology Plan Project, China (no.2016TP1007).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3086_MOESM1_ESM.docx (136 kb)
ESM 1 (DOCX 136 kb)

References

  1. 1.
    Li X, Shen C, Yang M, Rasooly A (2018) Polycytosine DNA electric-current-generated Immunosensor for electrochemical detection of human epidermal growth factor receptor 2 (HER2). Anal Chem 90(7):4764–4769CrossRefGoogle Scholar
  2. 2.
    Tallapragada SD, Layek K, Mukherjee R, Mistry KK, Ghosh M (2017) Development of screen-printed electrode based immunosensor for the detection of HER2 antigen in human serum samples. Bioelectrochemistry 118:25–30CrossRefGoogle Scholar
  3. 3.
    Mino-Kenudson M, Chirieac LR, Law K, Hornick JL, Lindeman N, Mark EJ, Cohen DW, Johnson BE, Janne PA, Iafrate AJ, Rodig SJ (2010) A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res 16(5):1561–1571PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Stewart RL, Caron JE, Gulbahce EH, Factor RE, Geiersbach KB, Downs-Kelly E (2017) HER2 immunohistochemical and fluorescence in situ hybridization discordances in invasive breast carcinoma with micropapillary features. Mod Pathol 30:1561–1566CrossRefGoogle Scholar
  5. 5.
    Alhalwani AY, Repine JE, Knowles MK, Huffman JA (2018) Development of a sandwich ELISA with potential for selective quantification of human lactoferrin protein nitrated through disease or environmental exposure. Anal Bioanal Chem 410(4):1389–1396CrossRefGoogle Scholar
  6. 6.
    Guo L, Tang T, Hu LS, Yang MH, Chen X (2017) Fluorescence assay of Fe (III) in human serum samples based on pH dependent silver nanoclusters. Sensors Actuators B Chem 241:773–778CrossRefGoogle Scholar
  7. 7.
    He L, Yang H, Xiao P, Singh R, He N, Liu B, Li Z (2017) Highly selective, sensitive and rapid detection of Escherichia coli O157:H7 using duplex PCR and magnetic nanoparticle-based Chemiluminescence assay. J Biomed Nanotechnol 13(10):1243–1252CrossRefGoogle Scholar
  8. 8.
    Ali Z, Wang J, Tang Y, Liu B, He N, Li Z (2016) Simultaneous detection of multiple viruses based on chemiluminescence and magnetic separation. Biomater Sci 5(1):57–66CrossRefGoogle Scholar
  9. 9.
    Zhang B, Liu B, Tang D, Niessner R, Chen G, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399CrossRefGoogle Scholar
  10. 10.
    Das J, Ivanov I, Sargent EH, Kelley SO (2016) DNA clutch probes for circulating tumor DNA analysis. J Am Chem Soc 138(34):11009–11016CrossRefGoogle Scholar
  11. 11.
    Gevensleben H, Garcia-Murillas I, Graeser MK, Schiavon G, Osin P, Parton M, Smith IE, Ashworth A, Turner NC (2013) Noninvasive detection of HER2 amplification with plasma DNA digital PCR. Clin Cancer Res 19(12):3276–3284CrossRefGoogle Scholar
  12. 12.
    He J-L, Wu Z-S, Zhou H, Wang H-Q, Jiang J-H, Shen G-L, Yu R-Q (2010) Fluorescence aptameric sensor for Strand displacement amplification detection of cocaine. Anal Chem 82:1358–1364CrossRefGoogle Scholar
  13. 13.
    Lee J, Icoz K, Roberts A, Ellington AD, Savran CA (2010) Diffractometric detection of proteins using microbead-based rolling circle amplification. Anal Chem 82:197–202PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Schweitzer B, Wiltshire S, Lambert J, O'Malley S, Kukanskis K, Zhu Z, Kingsmore SF, Lizardi PM, Ward DC (2000) Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. Proc Natl Acad Sci U S A 97(18):10113–10119PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Lizardi PM, Huang X, Zhu Z, Bray-Ward P, Thomas DC, Ward D (1998) Mutation detection and single-molecule counting using isothermal rolling-circle amplificatio. Nat Genet 19:225–232CrossRefGoogle Scholar
  16. 16.
    Okochi M, Koike S, Tanaka M, Honda H (2017) Detection of Her2-overexpressing cancer cells using keyhole shaped chamber array employing a magnetic droplet-handling system. Biosens Bioelectron 93:32–39CrossRefGoogle Scholar
  17. 17.
    Figura NB, Long W, Yu M, Robinson TJ, Mokhtari S, Etame AB, Tran ND, Diaz R, Soliman H, Han HS, Sahebjam S, Forsyth PA, Ahmed KA (2018) Intrathecal trastuzumab in the management of HER2+ breast leptomeningeal disease: a single institution experience. Breast Cancer Res Treat 169(2):391–396CrossRefGoogle Scholar
  18. 18.
    Giovanni P, Suganda D, HongMei R, Lilllian R, HongJun P, Ram S, Dennis JS (2000) Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast Cancer: a direct comparison of fluorescence in situ hybridization and immunohistochemistry. J Clin Oncol 18(21):3651–3664CrossRefGoogle Scholar
  19. 19.
    Agersborg S, Mixon C, Nguyen T, Aithal S, Sudarsanam S, Blocker F, Weiss L, Gasparini R, Jiang S, Chen W, Hess G, Albitar M (2018) Immunohistochemistry and alternative FISH testing in breast cancer with HER2 equivocal amplification. Breast Cancer Res Treat 170(2):321–328PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ding C, Zhang C, Yin X, Cao X, Cai M, Xian Y (2018) Near-infrared fluorescent Ag2S Nanodot-based signal amplification for efficient detection of circulating tumor cells. Anal Chem 90(11):6702–6709CrossRefGoogle Scholar
  21. 21.
    Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A (2017) DNA generated electric current biosensor. Anal Chem 89(4):2547–2552CrossRefGoogle Scholar
  22. 22.
    Shen C, Zeng K, Luo J, Li X, Yang M, Rasooly A (2017) Self-assembled DNA generated electric current biosensor for HER2 analysis. Anal Chem 89(19):10264–10269CrossRefGoogle Scholar
  23. 23.
    Ji X, Song X, Li J, Bai Y, Yang W, Peng X (2007) Size control of gold nanocrystals in citrate reduction the third role of citrate. J Am Chem Soc 129(45):13939–13948CrossRefGoogle Scholar
  24. 24.
    Nam JM, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):1884–1886PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Arya SK, Zhurauski P, Jolly P, Batistuti MR, Mulato M, Estrela P (2018) Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosens Bioelectron 102:106–112CrossRefGoogle Scholar
  26. 26.
    Feng K, Liu J, Deng L, Yu H, Yang M (2018) Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction. Microchim Acta 185(1):28CrossRefGoogle Scholar
  27. 27.
    Xiang W, Wang G, Cao S, Wang Q, Xiao X, Li Ting, Yang M (2018) Coupling antibody based recognition with DNA based signal amplification using an electrochemical probe modified with MnO2 nanosheets and gold nanoclusters: Application to the sensitive  voltammetric determination of the cancer biomarker alpha fetoprotein. Microchim Acta 185 335 Google Scholar
  28. 28.
    Xie B, Zhou N, Ding R, Zhao Y, Zhang B, Li T, Yang M (2017) Dual signal amplification strategy for electrochemical detection of platelet-derived growth factor BB. Anal Methods 9(46):6569–6573CrossRefGoogle Scholar
  29. 29.
    Jiang W, Liu L, Zhang L, Guo Q, Cui Y, Yang M (2017) Sensitive immunosensing of the carcinoembryonic antigen utilizing aptamer-based in-situ formation of a redox-active heteropolyacid and rolling circle amplification. Microchim Acta 184(12):4757–4763CrossRefGoogle Scholar
  30. 30.
    Shamsipur M, Emami M, Farzin L, Saber R (2018) A sandwich-type electrochemical immunosensor based on in situ silver deposition for determination of serum level of HER2 in breast cancer patients. Biosens Bioelectron 103:54–61CrossRefGoogle Scholar
  31. 31.
    Sharma S, Zapatero-Rodríguez J, Saxena R, O’Kennedy R, Srivastava S (2018) Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron 106:78–85CrossRefGoogle Scholar
  32. 32.
    Tian S, Zeng K, Yang A, Wang Q, Yang M (2017) A copper based enzyme-free fluorescence ELISA for HER2 detection. J Immunol Methods 451:78–82CrossRefGoogle Scholar
  33. 33.
    Capobianco JA, Shih WY, Yuan QA, Adams GP, Shih WH (2008) Label-free, all-electrical, in situ human epidermal growth receptor 2 detection. Rev Sci Instrum 79(7):076101PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Gohring JT, Dale PS, Fan X (2010) Detection of HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor. Sensors Actuators B Chem 146(1):226–230CrossRefGoogle Scholar
  35. 35.
    Niazi JH, Verma SK, Niazi S, Qureshia A (2015) In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst 140:243–249CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations