Advertisement

Microchimica Acta

, 185:541 | Cite as

Photoelectrochemical determination of the activity of protein kinase A by using g-C3N4 and CdS quantum dots

  • Chengji Sui
  • Fei Liu
  • Lihua Tang
  • Xue Li
  • Yunlei Zhou
  • Huanshun Yin
  • Shiyun Ai
Original Paper
  • 59 Downloads

Abstract

A sensitive and selective photoelectrochemical (PEC) method is described for the detection of protein kinase A (PKA) activity based on the use of graphite-like carbon nitride (g-C3N4) and the CdS quantum dots (QDs). Firstly, a complex was synthesized from g-C3N4 and gold nanoparticles (AuNPs). It was employed as both the PEC-active material and as a support for immobilization of peptides. The latter were assembled on an ITO electrode modified with g-C3N4-AuNPs and subsequently phosphorylated by PKA in the presence of adenosine 5′-[γ-thio]triphosphate (ATP-S). Finally, CdS quantum dots (QDs) were introduced on the ITO in order to increase the PEC response of g-C3N4 based on the Cd-S binding between the QDs and thiol groups. Under the optimal conditions and a typical working voltage of −0.3 V, the method has a dynamic range that extends from 0.05 to 50 unit·mL−1, with a 0.017 unit·mL−1 lower detection limit. The method was successfully applied to the quantification of the inhibitory effect of ellagic acid on the activity of PKA, and to monitor enzyme activity in cell lysates.

Graphical abstract

Schematic of a sensitive and selective photoelectrochemical biosensor for the detection of protein kinase A activity. It is based on the use of graphite-like carbon nitride and CdS quantum dots.

Keywords

Protein phosphorylation detection Graphite-like carbon nitride Gold nanoparticles Peptide Inhibitor screening Breast tissue Serum Signal amplification Ellagic acid Specificity 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21775090, 21375079), the Natural Science Foundation of Shandong province, China (No. ZR2014BQ029).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3076_MOESM1_ESM.doc (424 kb)
ESM 1 (DOC 424 kb)

References

  1. 1.
    Del Gobbo A, Peverelli E, Treppiedi D, Lania A, Mantovani G, Ferrero S (2016) Expression of protein kinase a regulatory subunits in benign and malignant human thyroid tissues: a systematic review. Exp Cell Res 346(1):85–90.  https://doi.org/10.1016/j.yexcr.2016.06.004 CrossRefPubMedGoogle Scholar
  2. 2.
    Augustinack JC, Schneider A, Mandelkow E-M, Hyman BT (2001) Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer's disease. Acta Neuropathol 103(1):26–35.  https://doi.org/10.1007/s004010100423 CrossRefGoogle Scholar
  3. 3.
    Huamin Wang AD, Yu S, Ahmed K (2001) Response of cancer cells to molecular interruption of the CK2 signal. Mol Cell Biochem 227(1–2):167–174.  https://doi.org/10.1023/A:1013112908734 CrossRefGoogle Scholar
  4. 4.
    Forst T, Weber MM, Pfutzner A (2012) Cardiovascular benefits of GLP-1-based herapies in patients with diabetes mellitus type 2: effects on endothelial and vascular dysfunction beyond glycemic control. Exp Diabetes Res 2012(635472):1–9.  https://doi.org/10.1155/2012/635472 CrossRefGoogle Scholar
  5. 5.
    Li X, Zhu L, Zhou Y, Yin H, Ai S (2017) Enhanced photoelectrochemical method for sensitive detection of protein kinase a activity using TiO2/g-C3N4, PAMAM dendrimer, and alkaline phosphatase. Anal Chem 89(4):2369–2376.  https://doi.org/10.1021/acs.analchem.6b04184 CrossRefPubMedGoogle Scholar
  6. 6.
    Kerman K, Kraatz H-B (2009) Electrochemical detection of protein tyrosine kinase-catalysed phosphorylation using gold nanoparticles. Biosens Bioelectron 24(5):1484–1489.  https://doi.org/10.1016/j.bios.2008.10.024 CrossRefPubMedGoogle Scholar
  7. 7.
    Liu X, Li Y, Xu X, Li P, Nie Z, Huang Y, Yao S (2014) Nanomaterial-based tools for protein kinase bioanalysis. Trac-trend Anal Chem 58:40–53.  https://doi.org/10.1016/j.trac.2014.01.009 CrossRefGoogle Scholar
  8. 8.
    Zhou Y, Yin H, Li X, Li Z, Ai S, Lin H (2016) Electrochemical biosensor for protein kinase a activity assay based on gold nanoparticles-carbon nanospheres, phos-tag-biotin and beta-galactosidase. Biosens Bioelectron 86:508–515.  https://doi.org/10.1016/j.bios.2016.07.004 CrossRefPubMedGoogle Scholar
  9. 9.
    Zhao WW, Xu JJ, Chen HY (2014) Photoelectrochemical DNA biosensors. Chem Rev 114(15):7421–7441.  https://doi.org/10.1021/cr500100j CrossRefPubMedGoogle Scholar
  10. 10.
    Cheng W, Pan J, Yang J, Zheng Z, Lu F, Chen Y, Gao W (2018) A photoelectrochemical aptasensor for thrombin based on the use of carbon quantum dot-sensitized TiO2 and visible-light photoelectrochemical activity. Microchim Acta 185(5):263.  https://doi.org/10.1007/s00604-018-2800-z CrossRefGoogle Scholar
  11. 11.
    Zhang B, Lu L, Hu Q, Huang F, Lin Z (2014) ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens Bioelectron 56:243–249.  https://doi.org/10.1016/j.bios.2014.01.026 CrossRefPubMedGoogle Scholar
  12. 12.
    Wu S, Huang H, Shang M, Du C, Wu Y, Song W (2017) High visible light sensitive MoS2 ultrathin nanosheets for photoelectrochemical biosensing. Biosens Bioelectron 92:646–653.  https://doi.org/10.1016/j.bios.2016.10.037 CrossRefPubMedGoogle Scholar
  13. 13.
    Wang M, Yin H, Shen N, Xu Z, Sun B, Ai S (2014) Signal-on photoelectrochemical biosensor for microRNA detection based on Bi2S3 nanorods and enzymatic amplification. Biosens Bioelectron 53:232–237.  https://doi.org/10.1016/j.bios.2013.09.069 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhou Y, Xu Z, Wang M, Sun B, Yin H, Ai S (2014) DNA methyltransferase activity assay based on visible light-activated photoelectrochemical biosensor. Biosens Bioelectron 53:263–267.  https://doi.org/10.1016/j.bios.2013.09.065 CrossRefPubMedGoogle Scholar
  15. 15.
    Li B, Yin H, Zhou Y, Wang M, Wang J, Ai S (2018) Photoelectrochemical detection of miRNA-319a in rice leaf responding to phytohormones treatment based on CuO-CuWO4 and rolling circle amplification. Sensors Actuators B Chem 255:1744–1752.  https://doi.org/10.1016/j.snb.2017.08.192 CrossRefGoogle Scholar
  16. 16.
    Wang H, Yin H, Huang H, Li K, Zhou Y, Waterhouse GIN, Lin H, Ai S (2018) Dual-signal amplified photoelectrochemical biosensor for detection of N(6)-methyladenosine based on BiVO4-110-TiO2 heterojunction, ag(+)-mediated cytosine pairs. Biosens Bioelectron 108:89–96.  https://doi.org/10.1016/j.bios.2018.02.056 CrossRefPubMedGoogle Scholar
  17. 17.
    Dai L, Du X, Jiang D, Chen W, Zhu M, Wang K (2016) Ultrafine α-Fe2O3 nanocrystals anchored on N-doped graphene: a nanomaterial with long hole diffusion length and efficient visible light-excited charge separation for use in photoelectrochemical sensing. Microchim Acta 184(1):137–145.  https://doi.org/10.1007/s00604-016-1989-y CrossRefGoogle Scholar
  18. 18.
    Ong W-J, Tan L-L, Ng YH, Yong S-T, Chai S-P (2016) Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 116(12):7159–7329.  https://doi.org/10.1021/acs.chemrev.6b00075 CrossRefPubMedGoogle Scholar
  19. 19.
    Xi X, Li J, Wang H, Zhao Q, Li H (2015) Non-enzymatic photoelectrochemical sensing of hydrogen peroxide using hierarchically structured zinc oxide hybridized with graphite-like carbon nitride. Microchim Acta 182(7–8):1273–1279.  https://doi.org/10.1007/s00604-015-1448-1 CrossRefGoogle Scholar
  20. 20.
    Han KK, Wang CC, Li YY, Wan MM, Wang Y, Zhu JH (2013) Facile template-free synthesis of porous g-C3N4 with high photocatalytic performance under visible light. RSC Adv 3(24):9465.  https://doi.org/10.1039/c3ra40765a CrossRefGoogle Scholar
  21. 21.
    Chen L, Zeng X, Si P, Chen Y, Chi Y, Kim DH, Chen G (2014) Gold nanoparticle-graphite-like C3N4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. Anal Chem 86(9):4188–4195.  https://doi.org/10.1021/ac403635f CrossRefPubMedGoogle Scholar
  22. 22.
    Li R, Liu Y, Yan T, Li Y, Cao W, Wei Q, Du B (2015) A competitive photoelectrochemical assay for estradiol based on in situ generated CdS-enhanced TiO2. Biosens Bioelectron 66:596–602.  https://doi.org/10.1016/j.bios.2014.12.002 CrossRefPubMedGoogle Scholar
  23. 23.
    Liu J, He X, Wang K, He D, Wang Y, Mao Y, Shi H, Wen L (2015) A highly sensitive electrochemiluminescence assay for protein kinase based on double-quenching of graphene quantum dots by G-quadruplex-hemin and gold nanoparticles. Biosens Bioelectron 70:54–60.  https://doi.org/10.1016/j.bios.2015.03.026 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang G-Y, Cai C, Cosnier S, Zeng H-B, Zhang X-J, Shan D (2016) Zirconium–metalloporphyrin frameworks as a three-in-one platform possessing oxygen nanocage, electron media, and bonding site for electrochemiluminescence protein kinase activity assay. Nanoscale 8(22):11649–11657.  https://doi.org/10.1039/c6nr01206j CrossRefPubMedGoogle Scholar
  25. 25.
    Shen C, Xia X, Hu S, Yang M, Wang J (2015) Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition. Anal Chem 87(1):693–698.  https://doi.org/10.1021/ac503492k CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang K, Zeng K, Shen C, Tian S, Yang M (2018) Determination of protein kinase a activity and inhibition by using hydroxyapatite nanoparticles as a fluorescent probe. Microchim Acta 185(4):225.  https://doi.org/10.1007/s00604-018-2754-1 CrossRefGoogle Scholar
  27. 27.
    Liu Q, Na W, Wang L, Su X (2017) Gold nanocluster-based fluorescent assay for label-free detection of protein kinase and its inhibitors. Microchim Acta 184(9):3381–3387.  https://doi.org/10.1007/s00604-017-2349-2 CrossRefGoogle Scholar
  28. 28.
    Zhou Y, Wang M, Yin H, Ai S (2017) Amperometric determination of the activity of protein kinase a using a glassy carbon electrode modified with IgG functionalized gold nanoparticles conjugated to horseradish peroxidase. Microchim Acta 184(9):3301–3308.  https://doi.org/10.1007/s00604-017-2341-x CrossRefGoogle Scholar
  29. 29.
    Liu J, He X, Wang K, Wang Y, Yan G, Mao Y (2014) Amplified electrochemical detection of protein kinase activity based on gold nanoparticles/multi-walled carbon nanotubes nanohybrids. Talanta 129:328–335.  https://doi.org/10.1016/j.talanta.2014.05.043 CrossRefPubMedGoogle Scholar
  30. 30.
    Shen C, Li X, Rasooly A, Guo L, Zhang K, Yang M (2016) A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 85:220–225.  https://doi.org/10.1016/j.bios.2016.05.025 CrossRefPubMedGoogle Scholar
  31. 31.
    Chand R, Han D, Shin IS, Hong JI, Kim YS (2015) Gold nanoparticle enhanced electrochemical assay for protein kinase activity using a synthetic chemosensor on a microchip. J Electrochem Soc 162(4):B89–B93.  https://doi.org/10.1149/2.0821504jes CrossRefGoogle Scholar
  32. 32.
    Sun S, Shen H, Liu C, Li Z (2015) Phosphorylation-regulated crosslinking of gold nanoparticles: a new strategy for colorimetric detection of protein kinase activity. Analyst 140(16):5685–5691.  https://doi.org/10.1039/c5an00963d CrossRefPubMedGoogle Scholar
  33. 33.
    Shen C, Zhang K, Gao N, Wei S, Liu G, Chai Y, Yang M (2016) Colorimetric and electrochemical determination of the activity of protein kinase based on retarded particle growth due to binding of phosphorylated peptides to DNA - capped silver nanoclusters. Microchim Acta 183(11):2933–2939.  https://doi.org/10.1007/s00604-016-1944-y CrossRefGoogle Scholar
  34. 34.
    Li X, Zhou Y, Xu Y, Xu H, Wang M, Yin H, Ai S (2016) A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride. Anal Chim Acta 934:36–43.  https://doi.org/10.1016/j.aca.2016.06.024 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Material ScienceShandong Agricultural UniversityTaianPeople’s Republic of China
  2. 2.The Tumor Center of Taian City Central HospitalTaianPeople’s Republic of China
  3. 3.The Blood Transfusion Division of Taian City Central HospitalTaianPeople’s Republic of China

Personalised recommendations