Microchimica Acta

, 186:49 | Cite as

Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review

  • Kamyar Khoshnevisan
  • Hassan Maleki
  • Elham Honarvarfard
  • Hadi Baharifar
  • Morteza Gholami
  • Farnoush FaridbodEmail author
  • Bagher LarijaniEmail author
  • Reza Faridi Majidi
  • Mohammad Reza KhorramizadehEmail author
Review Article


This review (with 131 references) summarizes the progress made in the past years in the field of nanomaterial based sensing of serotonin (5-HT). An introduction summarizes the significant role of 5-HT as a biomarker for several major diseases, methods for its determination and the various kinds of nanomaterials for use in electrochemical sensing process relies principally on a precise choice of electrodes. The next main section covers nanomaterial based methods for sensing 5-HT, with subsections on electrodes modified with carbon nanotubes, graphene related materials, gold nanomaterials, and by other nanomaterials. A concluding section discusses future perspectives and current challenges of 5-HT determination.

Graphical abstract

Conceptual design of electrochemical sensing process of the biomarker serotonin by using nanomaterials and the role of 5-HTas biomarker in the body from preclinical to clincal.


Serotonin Sensing Biomarker Electrochemical determination Graphene related materials Carbon nanotubes Gold nanoparticles 



This work was supported by Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences (Grant No. 1396-01-100-2249). The authors would like to express special thanks to Dr. Farshad Sharifi and Dr. Mahdi Khoshfetrat for their valuable insight.

Compliance with ethical standards

The authors declare that they have no competing interests.


  1. 1.
    Muhlbauer HD (1985) Human aggression and the role of central serotonin. Pharmacopsychiatry 18(2):218–221. CrossRefPubMedGoogle Scholar
  2. 2.
    Peeters M, Troost FJ, Van Grinsven B et al (2012) MIP-based biomimetic sensor for the electronic detection of serotonin in human blood plasma. Sensors Actuators B Chem 171–172:602–610. CrossRefGoogle Scholar
  3. 3.
    Kema IP, De Vries EGE, Muskiet FAJ (2000) Clinical chemistry of serotonin and metabolites. J Chromatogr B Biomed Sci Appl 747(1–2):33–48. CrossRefPubMedGoogle Scholar
  4. 4.
    Watts SW, Morrison SF, Davis RP, Barman SM (2012) Serotonin and blood pressure regulation. Pharmacol Rev 64(2):359–388. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vanhoutte PM (2013) Serotonin: beyond the brain. ACS Chem Neurosci 4:26–27. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Robinson R (2009) Serotonin’s role in the pancreas revealed at last. PLoS Biol 7(10):e1000227. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kéreveur A, Callebert J, Humbert M et al (2000) High plasma serotonin levels in primary pulmonary hypertension: effect of long-term epoprostenol (prostacyclin) therapy. Arterioscler Thromb Vasc Biol 20(10):2233–2239. CrossRefPubMedGoogle Scholar
  8. 8.
    Hara K, Hirowatari Y, Shimura Y, Takahashi H (2011) Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease. Diabetes Res Clin Pract 94(2):167–171. CrossRefPubMedGoogle Scholar
  9. 9.
    Sa M, Ying L, Tang AG et al (2012) Simultaneous determination of tyrosine, tryptophan and 5-hydroxytryptamine in serum of MDD patients by high performance liquid chromatography with fluorescence detection. Clin Chim Acta 413(11–12):973–977. CrossRefPubMedGoogle Scholar
  10. 10.
    Brand T, Anderson GM (2011) The measurement of platelet-poor plasma serotonin: a systematic review of prior reports and recommendations for improved analysis. Clin Chem 57(10):1376–1386. CrossRefPubMedGoogle Scholar
  11. 11.
    Huan H, Zhijun C, Xiaomei Y (2012) Simultaneous determination of serotonin and creatinine in urine by combining two ultrasound-assisted emulsification microextractions with on-column stacking in capillary electrophoresis. J Sep Sci 35:436–444. CrossRefGoogle Scholar
  12. 12.
    Rognum IJ, Tran H, Haas EA et al (2014) Serotonin metabolites in the cerebrospinal fluid in sudden infant death syndrome. J Neuropathol Exp Neurol 73:115–122. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    O’Mahony SM, Clarke G, Borre YE et al (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48. CrossRefPubMedGoogle Scholar
  14. 14.
    Gabriele S, Sacco R, Persico AM (2014) Blood serotonin levels in autism spectrum disorder: a systematic review and meta-analysis. Eur Neuropsychopharmacol 24(6):919–929. CrossRefPubMedGoogle Scholar
  15. 15.
    Hirowatari Y, Hara K, Shimura Y, Takahashi H (2011) Serotonin levels in platelet-poor plasma and whole blood from healthy subjects: relationship with lipid markers and coronary heart disease risk score. J Atheroscler Thromb 18(10):874–882. CrossRefPubMedGoogle Scholar
  16. 16.
    Moriarty M, Lee A, O’Connell B et al (2011) Development of an LC-MS/MS method for the analysis of serotonin and related compounds in urine and the identification of a potential biomarker for attention deficit hyperactivity/hyperkinetic disorder. Anal Bioanal Chem 401(8):2481–2493. CrossRefPubMedGoogle Scholar
  17. 17.
    Nigmatullina RR, Kirillova VV, Jourjikiya RK et al (2009) Disrupted serotonergic and sympathoadrenal systems in patients with chronic heart failure may serve as new therapeutic targets and novel biomarkers to assess severity, progression and response to treatment. Cardiology 113(4):277–286. CrossRefPubMedGoogle Scholar
  18. 18.
    Yang CJ, Liu CL, Sang B et al (2015) The combined role of serotonin and interleukin-6 as biomarker for autism. Neuroscience 22(284):290–296. CrossRefGoogle Scholar
  19. 19.
    Odaka Y, Takahashi J, Tsuburaya R et al (2017) Plasma concentration of serotonin is a novel biomarker for coronary microvascular dysfunction in patients with suspected angina and unobstructive coronary arteries. Eur Heart J 38(7):489–496. CrossRefPubMedGoogle Scholar
  20. 20.
    Danaceau JP, Anderson GM, McMahon WM, Crouch DJ (2003) A liquid chromatographic-tandem mass spectrometric method for the analysis of serotonin and related indoles in human whole blood. J Anal Toxicol 27(7):440–444. CrossRefPubMedGoogle Scholar
  21. 21.
    Zinellu A, Sotgia S, Deiana L, Carru C (2012) Reverse injection capillary electrophoresis UV detection for serotonin quantification in human whole blood. J Chromatogr B Anal Technol Biomed Life Sci 895:182–185. CrossRefGoogle Scholar
  22. 22.
    Jin Q, Shan L, Yue J, Wang X (2008) Spectrophotometric determination of total serotonin derivatives in the safflower seeds with Ehrlich’s reagent and the underlying color reaction mechanism. Food Chem 108(2008):779–783. CrossRefPubMedGoogle Scholar
  23. 23.
    Mumtaz M, Narasimhachari N, Friedel RO et al (1982) Evaluation of fluorometric assay methods for serotonin in platelets, plasma and whole blood samples by comparison with GC-MS-SIM technique. Res Commun Chem Pathol Pharmacol 36(1):45–60PubMedGoogle Scholar
  24. 24.
    Thompson JH, Spezia CA, Angulo M (1970) Fluorometric detection of serotonin using o-phthaldialdehyde: an improvement. Experientia 26(3):327–329. CrossRefPubMedGoogle Scholar
  25. 25.
    Kato T, Tokiyoshi A, Kashiwada Y, Miyachi K (2012) Simple and highly sensitive fluorometric determination of serotonin using propylene glycol. Analytical 60(8):685–689. CrossRefGoogle Scholar
  26. 26.
    Chauveau J, Fert V, Morel AM, Delaage MA (1991) Rapid and specific enzyme immunoassay of serotonin. Clin Chem 37(7):1178–1184PubMedGoogle Scholar
  27. 27.
    Hammel I, Naot Y, Ben-David E, Ginsburg H (1978) A simplified microassay for serotonin: modification of the enzymatic isotopic assay. Anal Biochem 90(2):840–843. CrossRefPubMedGoogle Scholar
  28. 28.
    Engbaek F, Voldby B (1982) Radioimmunoassay of serotonin (5-hydroxytryptamine) in cerebrospinal fluid, plasma, and serum. Clin Chem 28:624–628PubMedGoogle Scholar
  29. 29.
    Peterson ZD, Lee ML, Graves SW (2004) Determination of serotonin and its precursors in human plasma by capillary electrophoresis-electrospray ionization-time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 810(1):101–110. CrossRefGoogle Scholar
  30. 30.
    Nevado JJB, Llerena MJV, Cabanillas CG et al (2006) Sensitive capillary GC-MS-SIM determination of selective serotonin reuptake inhibitors: reliability evaluation by validation and robustness study. J Sep Sci 29(1):103–113. CrossRefGoogle Scholar
  31. 31.
    Tekes K (2008) HPLC determination of serotonin and its metabolites from human platelet-rich plasma; shift to 5-hydroxytryptophol formation following alcohol consumption. J Chromatogr Sci 46(2):169–173. CrossRefPubMedGoogle Scholar
  32. 32.
    Umeda S, Stagliano GW, Borenstein MR, Raffa RB (2005) A reverse-phase HPLC and fluorescence detection method for measurement of 5-hydroxytryptamine (serotonin) in Planaria. J Pharmacol Toxicol Methods 51(1):73–76. CrossRefPubMedGoogle Scholar
  33. 33.
    Yang X, Feng B, He X et al (2013) Carbon nanomaterial based electrochemical sensors for biogenic amines. Microchim Acta 180:935–956. CrossRefGoogle Scholar
  34. 34.
    Dezfuli AS, Ganjali MR, Jafari H, Faridbod F (2017) Samaria/reduced graphene oxide nanocomposites; sonochemical synthesis and electrochemical evaluation. J Mater Sci Mater Electron 28:6176–6185. CrossRefGoogle Scholar
  35. 35.
    Shoghi-Kalkhoran M, Faridbod F, Norouzi P, Ganjali MR (2018) Praseodymium molybdate nanoplates/reduced graphene oxide nanocomposite based electrode for simultaneous electrochemical determination of entacapone, levodopa and carbidopa. J Mater Sci Mater Electron 29:20–31. CrossRefGoogle Scholar
  36. 36.
    Aghazadeh M, Maragheh MG, Ganjali MR et al (2016) Electrochemical preparation of MnO2 nanobelts through pulse base-electrogeneration and evaluation of their electrochemical performance. Appl Surf Sci 364:141–147. CrossRefGoogle Scholar
  37. 37.
    Baharifar H, Honarvarfard E, Haji Malek-kheili M et al (2017) The potentials and applications of cellulose acetate in biosensor technology. Nanomedicine Res J 2:216–223. CrossRefGoogle Scholar
  38. 38.
    Farzin L, Shamsipur M, Samandari L, Sheibani S (2018) Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: a review. Microchim Acta 185:276. CrossRefGoogle Scholar
  39. 39.
    Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41. CrossRefGoogle Scholar
  40. 40.
    He L, Toh C-S (2006) Recent advances in analytical chemistry--a material approach. Anal Chim Acta 556(2006):1–15. CrossRefPubMedGoogle Scholar
  41. 41.
    Tretyakov YD, Goodilin EA (2009) Key trends in basic and application-oriented research on nanomaterials. Russ Chem Rev 78(9):801–820. CrossRefGoogle Scholar
  42. 42.
    Liu H, Webster TJ (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials 28(2):354–369. CrossRefPubMedGoogle Scholar
  43. 43.
    Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2:95–105. CrossRefGoogle Scholar
  44. 44.
    Khadem M, Faridbod F, Norouzi P et al (2017) Designing and development of an electrochemical sensor modified with molecularly imprinted polymer and carbon nanotubes for evaluation of occupational and environmental exposures to dicloran pesticide. Iran Occup Heal J 14(3):1–12Google Scholar
  45. 45.
    Monireh K, Farnoush F, Parviz N et al Modification of carbon paste electrode based on molecularly imprinted polymer for electrochemical determination of diazinon in biological and environmental samples. Electroanalysis 29:708–715.
  46. 46.
    Gomez FJV, Martín A, Silva MF, Escarpa A (2015) Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim Acta 182:1925–1931. CrossRefGoogle Scholar
  47. 47.
    Chávez JL, Hagen JA, Kelley-Loughnane N (2017) Fast and selective plasmonic serotonin detection with aptamer-gold nanoparticle conjugates. Sensors 17(4):681. CrossRefGoogle Scholar
  48. 48.
    Yusoff N, Pandikumar A, Ramaraj R et al (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114. CrossRefGoogle Scholar
  49. 49.
    Cesarino I, Galesco HV, Machado SAS (2014) Determination of serotonin on platinum electrode modified with carbon nanotubes/polypyrrole/silver nanoparticles nanohybrid. Mater Sci Eng C 40:49–54. CrossRefGoogle Scholar
  50. 50.
    Yang Y, Asiri AM, Tang Z et al (2013) Graphene based materials for biomedical applications. Mater Today 16(10):365–337. CrossRefGoogle Scholar
  51. 51.
    Suvarnaphaet P, Pechprasarn S (2017) Graphene-based materials for biosensors: a review. Sensors 17(10):2161. CrossRefGoogle Scholar
  52. 52.
    Sanati AL, Faridbod F, Ganjali MR (2017) Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J Mol Liq 241:316–320. CrossRefGoogle Scholar
  53. 53.
    Rand E, Periyakaruppan A, Tanaka Z et al (2013) A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid. Biosens Bioelectron 42:434–438. CrossRefPubMedGoogle Scholar
  54. 54.
    Adabi M, Saber R, Faridi-Majidi R, Faridbod F (2015) Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors. Mater Sci Eng C 48:673–678. CrossRefGoogle Scholar
  55. 55.
    Ruiyi L, Haiyan Z, Zaijun L, Junkang L (2018) Electrochemical determination of acetaminophen using a glassy carbon electrode modified with a hybrid material consisting of graphene aerogel and octadecylamine-functionalized carbon quantum dots. Microchim Acta 185:145. CrossRefGoogle Scholar
  56. 56.
    Yao Z, Yang X, Liu X et al (2017) Electrochemical quercetin sensor based on a nanocomposite consisting of magnetized reduced graphene oxide, silver nanoparticles and a molecularly imprinted polymer on a screen-printed electrode. Microchim Acta 185:70. CrossRefGoogle Scholar
  57. 57.
    Hasanzadeh M, Shadjou N, de la GM (2017) Current advancement in electrochemical analysis of neurotransmitters in biological fluids. TrAC Trends Anal Chem 86:107–121. CrossRefGoogle Scholar
  58. 58.
    Özel RE, Hayat A, Andreescu S (2015) Recent developments in electrochemical sensors for the detection of neurotransmitters for applications in biomedicine. Anal Lett 48(7):1044–1069. CrossRefPubMedGoogle Scholar
  59. 59.
    Hu P, Tanii T, Zhang GJ et al (2007) Ultrasensitive detection of biomolecules using functionalized multi-walled carbon nanotubes. Sensors Actuators B Chem 124(1):161–166. CrossRefGoogle Scholar
  60. 60.
    Vitale F, Summerson SR, Aazhang B et al (2015) Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9(4):4465–4474. CrossRefPubMedGoogle Scholar
  61. 61.
    Harreither W, Trouillon R, Poulin P et al (2013) Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling. Anal Chem 85(15):7447–7453. CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680. CrossRefGoogle Scholar
  63. 63.
    Kim SK, Ahmed MS, Jeong H et al (2011) Determination of serotonin on a glassy carbon electrode modified by electropolymerization of Meso-Tetrakis(2-aminophenyl)porphyrin and single walled carbon nanotubes. J Nanosci Nanotechnol 11:2407–2412. CrossRefPubMedGoogle Scholar
  64. 64.
    Kim SK, Bae SR, Ahmed MS et al (2011) Selective determination of serotonin on poly(3,4-ethylenedioxy pyrrole)-single-walled carbon nanotube-modified glassy carbon electrodes. Bull Kor Chem Soc 32(4):1215–1220. CrossRefGoogle Scholar
  65. 65.
    Sun Y, Fei J, Hou J et al (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165(3–4):373–379. CrossRefGoogle Scholar
  66. 66.
    Mazloum-ardakani M, Khoshroo A (2014) High sensitive sensor based on functionalized carbon nanotube / ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin. J Electroanal Chem 717:17–23. CrossRefGoogle Scholar
  67. 67.
    Mazloum-ardakani M, Khoshroo A (2014) Electrochimica Acta Electrocatalytic properties of functionalized carbon nanotubes with titanium dioxide and benzofuran derivative / ionic liquid for simultaneous determination of isoproterenol and serotonin. Electrochim Acta 130:634–641. CrossRefGoogle Scholar
  68. 68.
    Li Y, Ali MA, Chen SM et al (2014) Poly(basic red 9) doped functionalized multi-walled carbon nanotubes as composite films for neurotransmitters biosensors. Colloids Surf B Biointerfaces 118:133–139. CrossRefPubMedGoogle Scholar
  69. 69.
    Abbaspour A, Noori A (2011) A cyclodextrin host-guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens Bioelectron 26:4674–4680. CrossRefPubMedGoogle Scholar
  70. 70.
    Niu X, Mo Z, Yang X et al (2018) Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchim Acta 185:328. CrossRefGoogle Scholar
  71. 71.
    Cruz J, Kawasaki M, Gorski W (2000) Electrode coatings based on chitosan scaffolds. Anal Chem 72(4):680–686. CrossRefPubMedGoogle Scholar
  72. 72.
    Lau C, Cooney MJ, Atanassov P (2008) Conductive macroporous composite chitosan-carbon nanotube scaffolds. Langmuir 24(13):7004–7010. CrossRefPubMedGoogle Scholar
  73. 73.
    Babaei A, Babazadeh M (2011) A selective simultaneous determination of levodopa and serotonin using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanalysis 23(7):1726–1735. CrossRefGoogle Scholar
  74. 74.
    Wang Z, Liang Q, Wang Y, Luo G (2003) Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem 540(2):129–134. CrossRefGoogle Scholar
  75. 75.
    Wu K, Fei J, Hu S (2003) Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal Biochem 318(1):100–106. CrossRefPubMedGoogle Scholar
  76. 76.
    Güell AG, Meadows KE, Unwin PR, MacPherson JV (2010) Trace voltammetric detection of serotonin at carbon electrodes: comparison of glassy carbon, boron doped diamond and carbon nanotube network electrodes. Phys Chem Chem Phys 12:10108–10114. CrossRefPubMedGoogle Scholar
  77. 77.
    Fagan-Murphy A, Patel BA (2014) Compressed multiwall carbon nanotube composite electrodes provide enhanced electroanalytical performance for determination of serotonin. Electrochim Acta 138:392–399. CrossRefGoogle Scholar
  78. 78.
    Babaei A, Taheri AR, Aminikhah M (2013) Nanomolar simultaneous determination of levodopa and serotonin at a novel carbon ionic liquid electrode modified with co(OH)2 nanoparticles and multi-walled carbon nanotubes. Electrochim Acta 90:317–325. CrossRefGoogle Scholar
  79. 79.
    Babaei A, Reza A (2013) Sensors and actuators B : chemical Nafion/Ni(OH)2 nanoparticles-carbon nanotube composite modified glassy carbon electrode as a sensor for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. Sensors Actuators B Chem 176:543–551. CrossRefGoogle Scholar
  80. 80.
    Satyanarayana M, Koteshwara Reddy K, Vengatajalabathy Gobi K (2014) Nanobiocomposite based electrochemical sensor for sensitive determination of serotonin in presence of dopamine, ascorbic acid and uric acid in vitro. Electroanalysis 26(11):2365–2372. CrossRefGoogle Scholar
  81. 81.
    Ran G, Chen C, Gu C (2015) Serotonin sensor based on a glassy carbon electrode modified with multiwalled carbon nanotubes, chitosan and poly(p-aminobenzenesulfonate). Microchim Acta 182(7–8):1323–1328. CrossRefGoogle Scholar
  82. 82.
    Wang Y, Wang S, Tao L et al (2015) Biosensors and bioelectronics A disposable electrochemical sensor for simultaneous determination of norepinephrine and serotonin in rat cerebrospinal fl uid based on MWNTs-ZnO/chitosan composites modi fi ed screen-printed electrode. Biosens Bioelectron 65:31–38. CrossRefPubMedGoogle Scholar
  83. 83.
    Xu H, Wang L, Luo J et al (2015) Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array. Sensors 15(1):1008–1021. CrossRefPubMedGoogle Scholar
  84. 84.
    Wang S, Wang Y, Min Q et al (2016) Simultaneous electrochemical determination of dopamine and serotonin in rat cerebrospinal fluid using screen-printed electrode modified with MWNTs-SiO2 -chitosan composites. Int J Electrochem Sci 11:2360–2376. CrossRefGoogle Scholar
  85. 85.
    Goyal RN, Agrawal B (2012) Ag ion irradiated based sensor for the electrochemical determination of epinephrine and 5-hydroxytryptamine in human biological fluids. Anal Chim Acta 743:33–40. CrossRefPubMedGoogle Scholar
  86. 86.
    Fayemi OE, Adekunle AS, Ebenso EE (2017) Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sensing and Bio-Sensing Research 8(6):279. CrossRefGoogle Scholar
  87. 87.
    Kumar N, Rosy, Goyal RN (2017) Palladium nano particles decorated multi-walled carbon nanotubes modified sensor for the determination of 5-hydroxytryptophan in biological fluids. Sensors Actuators B Chem 239:1060–1068. CrossRefGoogle Scholar
  88. 88.
    Sun D, Li H, Li M et al (2018) Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sensors Actuators B Chem 259:433–442. CrossRefGoogle Scholar
  89. 89.
    Yang C, Trikantzopoulos E, Jacobs CB, Venton BJ (2017) Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: correlation of electrochemical performance and surface properties. Anal Chim Acta 965:1–8. CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Gershon MD (2013) 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 20(1):14–21. CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Patel BA, Bian X, Quaiserová-Mocko V et al (2007) In vitro continuous amperometric monitoring of 5-hydroxytryptamine release from enterochromaffin cells of the Guinea pig ileum. Analyst 132(1):41–47. CrossRefPubMedGoogle Scholar
  92. 92.
    Fagan-Murphy A, Watt F, Morgan KA, Patel BA (2012) Influence of different biological environments on the stability of serotonin detection on carbon-based electrodes. J Electroanal Chem 684:1–5. CrossRefGoogle Scholar
  93. 93.
    Morris R, Fagan-Murphy A, MacEachern SJ et al (2016) Electrochemical fecal pellet sensor for simultaneous real-time ex vivo detection of colonic serotonin signalling and motility. Sci Rep 6:23442. CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Swamy BEK, Venton BJ (2007) Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo. Analyst 132(9):876–884. CrossRefPubMedGoogle Scholar
  95. 95.
    Li YT, Tang LN, Ning Y et al (2016) In vivo monitoring of serotonin by nanomaterial functionalized acupuncture needle. Sci Rep 6:28018. CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Njagi J, Ball M, Best M et al (2010) Electrochemical quantification of serotonin in the live embryonic zebrafish intestine. Anal Chem 82(5):1822–1830. CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Huang X, Zeng Z, Fan Z et al (2012) Graphene-based electrodes. Adv Mater 24(45):5979–6004. CrossRefPubMedGoogle Scholar
  98. 98.
    Alwarappan S, Erdem A, Liu C, Li C-Z (2009) Probing the electrochemical properties of graphene nanosheets for biosensing applications. J Phys Chem C 113(20):8853–8857. CrossRefGoogle Scholar
  99. 99.
    Kim SK, Kim D, Jeon S (2012) Electrochemical determination of serotonin on glassy carbon electrode modified with various graphene nanomaterials. Sensors Actuators B Chem 174:285–291. CrossRefGoogle Scholar
  100. 100.
    Raj M, Goyal RN (2017) Graphene nanoribbons/poly-Bromocresol green based sensor for the simultaneous determination of 3, 4-Dihydroxyphenylacetic acid and 5-Hydroxyindoleacetic acid. J Electrochem Soc 164(13):B695–B703. CrossRefGoogle Scholar
  101. 101.
    Han HS, You J-M, Jeong H, Jeon S (2013) Synthesis of graphene oxide grafted poly (lactic acid) with palladium nanoparticles and its application to serotonin sensing. Appl Surf Sci 284:438–445. CrossRefGoogle Scholar
  102. 102.
    Han HS, Lee HK, You JM et al (2014) Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sensors Actuators B Chem 190:886–895. CrossRefGoogle Scholar
  103. 103.
    Xue C, Wang X, Zhu W et al (2014) Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles. Sensors Actuators B Chem 196:57–63. CrossRefGoogle Scholar
  104. 104.
    Devadas B, Madhu R, Chen S (2014) Electrochemical preparation of a reduced graphene oxide / ruthenium oxide modified electrode and its application to the simultaneous determination of serotonin and melatonin. Sci Technol Adv Mater 7(4):654–662. CrossRefGoogle Scholar
  105. 105.
    Dinesh B, Veeramani V, Chen S, Saraswathi R (2017) In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modi fi ed electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. J Electroanal Chem 786:169–176. CrossRefGoogle Scholar
  106. 106.
    Duy T, Balamurugan J, Hien H, Van HN (2017) Biosensors and bioelectronics a novel sensitive sensor for serotonin based on high-quality of AuAg nanoalloy encapsulated graphene electrocatalyst. Biosens Bioelectron 96:186–193. CrossRefGoogle Scholar
  107. 107.
    Sadanandhan NK, Cheriyathuchenaaramvalli M, Devaki SJ, Ravindranatha Menon AR (2017) PEDOT-reduced graphene oxide-silver hybrid nanocomposite modified transducer for the detection of serotonin. J Electroanal Chem 794:244–253. CrossRefGoogle Scholar
  108. 108.
    Wei X, Wang F, Yin Y et al (2010) Selective detection of neurotransmitter serotonin by a gold nanoparticle-modified glassy carbon electrode. Analyst 135:2286–2290. CrossRefPubMedGoogle Scholar
  109. 109.
    Sadanandhan NK, Devaki SJ (2017) Gold nanoparticle patterned on PANI nanowire modified transducer for the simultaneous determination of neurotransmitters in presence of ascorbic acid and uric acid. J Appl Polym Sci 134:1–9. CrossRefGoogle Scholar
  110. 110.
    Li J, Lin X (2007) Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sensors Actuators B Chem 124:486–493. CrossRefGoogle Scholar
  111. 111.
    Atta NF, Galal A, Abu-Attia FM, Azab SM (2011) Simultaneous determination of paracetamol and neurotransmitters in biological fluids using a carbon paste sensor modified with gold nanoparticles. J Mater Chem 21:13015–13024. CrossRefGoogle Scholar
  112. 112.
    Atta NF, Galal A, Azab SM (2012) Electrochemical determination of neurotransmitters using gold nanoparticles on Nafion/carbon paste modified electrode. J Electrochem Soc 159:H765–H771. CrossRefGoogle Scholar
  113. 113.
    Liu M, Xiang J, Zhou J, Ding H (2010) A disposable amperometric sensor for rapid detection of serotonin in the blood and brain of the depressed mice based on Nafion membrane-coated colloidal gold screen-printed electrode. J Electroanal Chem 640:1–7. CrossRefGoogle Scholar
  114. 114.
    Li N, Lu Y, Li S et al (2017) Monitoring the electrochemical responses of neurotransmitters through localized surface plasmon resonance using nanohole array. Biosens Bioelectron 93:241–249. CrossRefPubMedGoogle Scholar
  115. 115.
    Goyal RN, Oyama M, Gupta VK et al (2008) Sensors for 5-hydroxytryptamine and 5-hydroxyindole acetic acid based on nanomaterial modified electrodes. Sensors Actuators B Chem 134:816–821. CrossRefGoogle Scholar
  116. 116.
    Kato Y, Oki K, Suga N et al (2016) A novel quinone derived from 5-hydroxyindoleacetic acid reacts with protein: possible participation of oxidation of serotonin and its metabolite in the development of atherosclerosis. Free Radic Biol Med 101:500–510. CrossRefPubMedGoogle Scholar
  117. 117.
    Cakir K, Erdem SS, Atalay VE (2016) ONIOM calculations on serotonin degradation by monoamine oxidase B: insight into the oxidation mechanism and covalent reversible inhibition. Org Biomol Chem 14:9239–9252. CrossRefPubMedGoogle Scholar
  118. 118.
    Güell AG, Meadows KE, Dudin PV et al (2014) Selection, characterisation and mapping of complex electrochemical processes at individual single-walled carbon nanotubes: the case of serotonin oxidation. Faraday Discuss 172:439–455. CrossRefPubMedGoogle Scholar
  119. 119.
    Grès S, Canteiro S, Mercader J, Carpéné C (2013) Oxidation of high doses of serotonin favors lipid accumulation in mouse and human fat cells. Mol Nutr Food Res 57:1089–1099. CrossRefPubMedGoogle Scholar
  120. 120.
    Patel AN, Unwin PR, Macpherson JV (2013) Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond. Phys Chem Chem Phys 15:18085. CrossRefPubMedGoogle Scholar
  121. 121.
    Özcan A, İlkbaş S (2015) Poly(pyrrole-3-carboxylic acid)-modified pencil graphite electrode for the determination of serotonin in biological samples by adsorptive stripping voltammetry. Sensors Actuators B Chem 215:518–524. CrossRefGoogle Scholar
  122. 122.
    Özcan A, İlkbaş S, Kato Y et al (2014) A novel quinone derived from 5-hydroxyindoleacetic acid reacts with protein: possible participation of oxidation of serotonin and its metabolite in the development of atherosclerosis. Faraday Discuss 172:439–455. CrossRefGoogle Scholar
  123. 123.
    Tertiş M, Cernat A, Lacatiș D et al (2017) Highly selective electrochemical detection of serotonin on polypyrrole and gold nanoparticles-based 3D architecture. Electrochem Commun 75:43–47. CrossRefGoogle Scholar
  124. 124.
    Özel RE, Wallace KN, Andreescu S (2011) Chitosan coated carbon fiber microelectrode for selective in vivo detection of neurotransmitters in live zebrafish embryos. Anal Chim Acta 695:89–95. CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Hasanzadeh M, Shadjou N, Omidinia E (2013) A novel electroanalytical method for simultaneous detection of two neurotransmitter dopamine and serotonin in human serum. J Neurosci Methods 219:52–60. CrossRefPubMedGoogle Scholar
  126. 126.
    Gupta P, Goyal RN (2014) Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta 120:17–22. CrossRefPubMedGoogle Scholar
  127. 127.
    Peeters M, Csipai P, Geerets B et al (2013) Heat-transfer-based detection of l-nicotine, histamine, and serotonin using molecularly imprinted polymers as biomimetic receptors. Anal Bioanal Chem 405:6453–6460. CrossRefPubMedGoogle Scholar
  128. 128.
    Yang Y, Zeng Y, Tang C et al (2018) Voltammetric determination of 5-hydroxytryptamine based on the use of platinum nanoparticles coated with molecularly imprinted silica. Microchim Acta 185:219. CrossRefGoogle Scholar
  129. 129.
    Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484. CrossRefGoogle Scholar
  130. 130.
    Arvinte A, Mahosenaho M, Pinteala M et al (2011) Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes. Microchim Acta 174:337–343. CrossRefGoogle Scholar
  131. 131.
    Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  2. 2.Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences InstituteTehran University of Medical SciencesTehranIran
  3. 3.Department of Medical Nanotechnology, School of Advanced Technologies in MedicineTehran University of Medical SciencesTehranIran
  4. 4.Department of Chemistry and Biomolecular ScienceClarkson UniversityPotsdamUSA
  5. 5.Department of Medical Nanotechnology, Applied Biophotonics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran
  6. 6.Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  7. 7.Center of Excellence in Electrochemistry, School of Chemistry, College of ScienceUniversity of TehranTehranIran

Personalised recommendations