Advertisement

Microchimica Acta

, 185:521 | Cite as

Photoelectrochemical sensing of tannic acid based on the use of TiO2 sensitized with 5-methylphenazinium methosulfate and carboxy-functionalized CdTe quantum dots

  • Fernanda Maria dos Reis Lima
  • André da Silva Freires
  • Neuma das Mercês Pereira
  • Glaura Goulart Silva
  • Cláudia Quintino da Rocha
  • Flavio Santos Damos
  • Rita de Cássia Silva LuzEmail author
Original Paper
  • 202 Downloads

Abstract

The article describes a method for determination of tannic acid in extracts of medicinal plants. Tannic acid (TA) is an antioxidant and has anticancer and antimicrobial properties. Titanium dioxide nanoparticles (TiO2) were co-sensitized with 5-methylphenazinium methosulfate (PMS) and carboxy-functionalized cadmium telluride quantum dots (CdTe QDs), and immobilized on a fluorine-doped tin oxide electrode. The surface morphology and electrochemical properties of the modified electrode were investigated by scanning electron microscopy and amperometry, respectively. A composite consisting of TiO2, PMS and CdTe QDs in a nafion film has a response to TA under LED light higher than that observed for each separate component. Under optimized experimental conditions and at an applied voltage of +0.4 V vs Ag/AgCl, the photoelectrochemical sensor has a linear response in the 0.2 to 200 μmol L−1 TA concentration range and a detection limit of 60 nmol L−1. The sensor was successfully applied to the determination of TA in spiked extracts from three medicinal plants, with recovery values between 98.3 and 103.9 %.

Graphical abstract

Schematic diagram for photoelectrochemical detection of tannic acid based on a fluorine doped tin oxide electrode modified with titanium oxide, 5-methylphenazinium methosulfate and carboxy-functionalized cadmium telluride quantum dots

Keywords

Photoelectrochemistry LED light Nanoparticles Quantum dots Phenazine Medicinal plants 

Notes

Acknowledgements

The authors are grateful to FAPEMA (PRONEM-00155/16; UNIVERSAL-00927/16; UNIVERSAL-01194/17), CNPq (303525/2016-9; 421139/2016-1; 305680/2015-3;426337/2016-6), and Instituto Nacional de Ciência e Tecnologia em Bioanalítica (465389/2014-7) for financial support. The authors are grateful to the Microscopy Center/UFMG by the SEM images.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3047_MOESM1_ESM.docx (220 kb)
ESM 1 (DOCX 220 kb)

References

  1. 1.
    Chung KT, Wong TY, Wei CI, Huang YW, Lin Y (1998) Tannins and human health: a review. Crit Rev Food Sci Nutr 38(6):421–464.  https://doi.org/10.1080/10408699891274273 CrossRefPubMedGoogle Scholar
  2. 2.
    Zywicki B, Reemtsma T, Jekel M (2002) Analysis of commercial vegetable tanning agents by reversed-phase liquid chromatography–electrospray ionization–tandem mass spectrometry and its application to wastewater. J Chromatogr A 970:191–200.  https://doi.org/10.1016/S0021-9673(02)00883-X CrossRefPubMedGoogle Scholar
  3. 3.
    Qu XJ, Zhou J, Yin HZ, Sun YH (2000) Flow injection-kinetic spectrophotometry for determination of tannic acid in Lupulus. Chin J Anal Chem 28:820–824Google Scholar
  4. 4.
    Li GW, Hong L, Tong MS, Deng HH, Xia XH, Chen W (2015) Determination of tannic acid based on luminol chemiluminescence catalyzed by cupric oxide nanoparticles. Anal Methods 7:1924–1928.  https://doi.org/10.1039/C4AY02736A CrossRefGoogle Scholar
  5. 5.
    Dewia MA, Ratnawatia J, Purwasiha RW (2014) Determination of Total tannin of white and red rind pomegranate (Punica granatum L.) by colorimetry method using reagent 1, 10 Phenantroline. Procedia Chem 13:214–217.  https://doi.org/10.1016/j.proche.2014.12.030 CrossRefGoogle Scholar
  6. 6.
    Yılmaz ÜT, Çalık E, Uzun D, Karipcin F, Yılmaz H (2016) Selective and sensitive determination of tannic acid using a 1-benzoyl-3-(pyrrolidine) thiourea film modified glassy carbon electrode. J Electroanal Chem 776:1–8.  https://doi.org/10.1016/j.jelechem.2016.06.037 CrossRefGoogle Scholar
  7. 7.
    Santos GKC, Silva FGS, Yotsumoto-Neto S, Santos WTP, Luz RCS, Damos FS (2018) Self-powered Photoelectrochemical sensor for Gallic acid exploiting a CdSe/ZnS Core-shell quantum dot sensitized TiO2 as Photoanode. Electroanalysis 30(2018):1–8.  https://doi.org/10.1002/elan.201800133 CrossRefGoogle Scholar
  8. 8.
    Silva FGS, Santos GKC, Neto SY, Luz RCS, Damos FS (2018) Self-powered sensor for tannic acid exploiting visible LED light as excitation source. Electrochim Acta 274:67–73.  https://doi.org/10.1016/j.electacta.2018.04.049 CrossRefGoogle Scholar
  9. 9.
    Wang M, Yang Z, Guo Y, Wang X, Yin H, Ai S (2015) Visible-light induced photoelectrochemical biosensor for the detection of microRNA based on Bi2S3 nanorods and streptavidin on an ITO electrode. Microchim Acta 182:241–248.  https://doi.org/10.1007/s00604-014-1324-4 CrossRefGoogle Scholar
  10. 10.
    Zhao WW, Wang J, Xu JJ, Chen HY (2011) Energy transfer between CdS quantum dots and au nanoparticles in photoelectrochemical detection. Chem Commun 47:10990–10992.  https://doi.org/10.1039/C1CC13952E CrossRefGoogle Scholar
  11. 11.
    Shen Q, Shi X, Fan M, Han L, Wang L, Fan Q (2015) Highly sensitive photoelectrochemical cysteine sensor based on reduced graphene oxide/CdS:Mn nanocomposites. J Electroanal Chem 759:61–66.  https://doi.org/10.1016/j.jelechem.2015.10.013 CrossRefGoogle Scholar
  12. 12.
    Sun B, Zhang K, Chen L, Guo L, Ai S (2013) A novel photoelectrochemical sensor based on PPIX-functionalized WO3–rGO nanohybrid-decorated ITO electrode for detecting cysteine. Biosens Bioelectron 44:48–51.  https://doi.org/10.1016/j.bios.2013.01.014 CrossRefPubMedGoogle Scholar
  13. 13.
    Hun X, Wang S, Wang S, Zhao J, Luo X (2017) A photoelectrochemical sensor for ultrasensitive dopamine detection based on single-layer NanoMoS2 modified gold electrode. Sensors Actuators B Chem 249:83–89.  https://doi.org/10.1016/j.snb.2017.04.065 CrossRefGoogle Scholar
  14. 14.
    Cheng J, Shen Y, Chen K, Wang X, Guo Y, Zhou X, Bai R (2018) Flower like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation. Chin J Catal 39:810–820.  https://doi.org/10.1016/S1872-2067(17)63004-3 CrossRefGoogle Scholar
  15. 15.
    Zhao Y, Tan L, Gao X, Jie G, Huang T (2018) Silver nanoclusters-assisted ion-exchange reaction with CdTe quantum dots for photoelectrochemical detection of adenosine by target-triggering multiple-cycle amplification strategy. Biosens Bioelectron 110:239–245.  https://doi.org/10.1016/j.bios.2018.03.069 CrossRefPubMedGoogle Scholar
  16. 16.
    Li H, Li J, Xu Q, Hu X (2011) Poly(3-hexylthiophene)/TiO2 nanoparticle-functionalized electrodes for visible light and low potential Photoelectrochemical sensing of organophosphorus pesticide Chlopyrifos. Anal Chem 83(24):9681–9686.  https://doi.org/10.1021/ac202679g CrossRefPubMedGoogle Scholar
  17. 17.
    Wang XT, Wei QY, Zhang L, Sun HF, Li H, Zhang QX (2016) CdTe/TiO2 nanocomposite material for photogenerated cathodic protection of 304 stainless steel. Mater Sci Eng B 208:22–28.  https://doi.org/10.1016/j.mseb.2016.02.006 CrossRefGoogle Scholar
  18. 18.
    Li YJ, Ma MJ, Zhu JJ (2012) Dual-signal amplification strategy for ultrasensitive Photoelectrochemical Immunosensing of α-fetoprotein. Anal Chem 84:10492–−10499.  https://doi.org/10.1021/ac302853y CrossRefPubMedGoogle Scholar
  19. 19.
    Mao J, Zhang X, Liu SH, Shen Z, Li X, Wu W, Chou PT, Hua J (2015) Molecular engineering of D-A-п-A dyes with 2-(1,1- dicyanomethylene)rhodanine as an electron-acceptinмg and anchoring group for dye-sensitized solar cells. Electrochim Acta 179:179–186.  https://doi.org/10.1016/j.electacta.2015.05.003 CrossRefGoogle Scholar
  20. 20.
    Gratzel M (2001) Sol-gel processed TiO2 films for photovoltaic applications. J Sol-Gel Sci Technol 22:7–13.  https://doi.org/10.1023/A:1011273700573 CrossRefGoogle Scholar
  21. 21.
    Altın İ, Sökmen M, Bıyıklıoğlu Z (2016) Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal. Mater Sci Semicond Process 45:36–44.  https://doi.org/10.1016/j.mssp.2016.01.016 CrossRefGoogle Scholar
  22. 22.
    De Oliveira RM, Santos NG, Alves LA, Lima KCMS, Kubota LT, Damos FS, Luz RCS (2015) Highly sensitive p-nitrophenol determination employing a new sensor based on N-Methylphenazonium methyl sulfate and graphene: analysis in natural and treated waters. Sensors Actuators B Chem 221:740–749.  https://doi.org/10.1016/j.snb.2015.07.014 CrossRefGoogle Scholar
  23. 23.
    Wang Q, Yang X, Chi L, Cui M (2013) Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochim Acta 91:330–336.  https://doi.org/10.1016/j.electacta.2012.12.117 CrossRefGoogle Scholar
  24. 24.
    Gao XF, Li HB, Sun WT, Chen Q, Tang FQ, Peng LM (2009) CdTe quantum dots-sensitized TiO2 nanotube Array Photoelectrodes. J Phys Chem C 113(18):7531–7535.  https://doi.org/10.1021/jp810727n CrossRefGoogle Scholar
  25. 25.
    Ding SN, Gao BH, Shan D, Sun YM, Cosnier S (2012) Dramatically enhanced solid state Electrochemiluminescence of CdTe quantum dots composed with TiO2 nanoparticles. Chem Eur J 18:1595–1598.  https://doi.org/10.1002/chem.201102118 CrossRefPubMedGoogle Scholar
  26. 26.
    Prista LN, Alves AC, Morgado RMR (1995) Tecnologia Farmacêutica, 5ª ed. Fundação Calouste Gulbenkian: Lisboa, pp. 199–478Google Scholar
  27. 27.
    Li S, Chen H, Wei X, Lu X, Zhang L (2006) Determination of tannic acid by flow injection analysis with inhibited Chemiluminescence detection. Microchim Acta 155:427–430.  https://doi.org/10.1007/s00604-006-0628-4 CrossRefGoogle Scholar
  28. 28.
    Moya HD, Dantoni P, Rocha FRP, Coichev N (2008) A multicommuted flow-system for spectrophotometric determination of tannin exploiting the cu(I)/BCA complex formation. Microchem J 88:21–25.  https://doi.org/10.1016/j.microc.2007.08.006 CrossRefGoogle Scholar
  29. 29.
    Ahmed GHG, Laíño RB, Calzón JAG, García MED (2015) Fluorescent carbon nanodots for sensitive and selective detection of tannic acid in wines. Talanta 132:252–257.  https://doi.org/10.1016/j.talanta.2014.09.028 CrossRefPubMedGoogle Scholar
  30. 30.
    Wan H, Zou Q, Yan R, Zhao F, Zeng B (2007) Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode. Microchim Acta 159:109–115.  https://doi.org/10.1007/s00604-006-0717-4 CrossRefGoogle Scholar
  31. 31.
    Li S, Zhang K, Wang J, Yan B, Wang C, Xiong Z, Xu H, Du Y (2017) Enhanced TA determination on 3D flower-like ZnO-Ptnanocomposites under ultraviolet light illumination. Sensors Actuators B Chem 252:717–724.  https://doi.org/10.1016/j.snb.2017.06.046 CrossRefGoogle Scholar
  32. 32.
    Chen RLC, Lin C-H, Chung C-Y, Cheng T-J (2005) Determination of tannin in green tea infusion by flow-injection analysis based on quenching the fluorescence of 3-Aminophthalate. J Agric Food Chem 53:8443–8446.  https://doi.org/10.1021/jf051077f CrossRefPubMedGoogle Scholar
  33. 33.
    Chen Z, Zhang X, Cao H, Huang Y (2013) Chitosan-capped silver nanoparticles as a highly selective colorimetric probe for visual detection of aromatic ortho-trihydroxy phenols. Analyst 138:2343–2349.  https://doi.org/10.1039/c3an36905f CrossRefPubMedGoogle Scholar
  34. 34.
    Shekhovtsova TN, Muginova SV, Luchinina JA, Galimova AZ (2006) Enzymatic methods in food analysis: determination of ascorbic acid. Anal Chim Acta 573–574:125–132.  https://doi.org/10.1016/j.aca.2006.05.015 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Fernanda Maria dos Reis Lima
    • 1
  • André da Silva Freires
    • 1
  • Neuma das Mercês Pereira
    • 2
  • Glaura Goulart Silva
    • 2
  • Cláudia Quintino da Rocha
    • 1
  • Flavio Santos Damos
    • 1
  • Rita de Cássia Silva Luz
    • 1
    Email author return OK on get
  1. 1.Department of ChemistryFederal University of MaranhãoSão LuísBrazil
  2. 2.Department of ChemistryFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations