Advertisement

Microchimica Acta

, 185:540 | Cite as

An enzymatic ratiometric fluorescence assay for 6-mercaptopurine by using MoS2 quantum dots

  • Feng Zhang
  • Hua Liu
  • Qing Liu
  • Xingguang Su
Original Paper
  • 76 Downloads

Abstract

A ratiometric fluorescence method is described for the determination of the anticancer drug 6-mercaptopurine (6-MP). The method is based on the use of fluorescent MoS2 quantum dots (MQDs) and of the enzyme horseradish peroxidase (HRP). In the absence of 6-MP, HRP catalyzes the oxidation of o-phenylenediamine (OPD) by H2O2 to form 2,3-diaminophenazine (DAP). This leads to quenching of the violet fluorescence of MQDs (measured at excitation/emission wavelengths of 360/415 nm), while the strong yellow fluorescence of DAP (peaking at 560 nm) becomes increasingly strong. In the presence of 6-MP, however, it will be preferentially oxidized by the HRP/H2O2 system to form a disulfide dimer. Hence, less H2O2 is available for the oxidation of OPD and less DAP will be formed. This results in the recovery of the violet fluorescence and a decrease of the yellow fluorescence. The ratio of the two signals can be used to quantify either H2O2 or 6-MP. Linear responses are observed for H2O2 in 0.5–140 μM concentration range, and for 6-MP in the 0.5–70 μM concentration range, with detection limits of 0.1 μM and 0.29 μM, respectively. The method was applied to the determination of 6-MP in spiked human urine and gave satisfactory results.

Graphical Abstract

Schematic of an enzymatic fluorometric method for determination of 6-mercaptopurine (6-MP). It is based on the presence of 6-MP that can inhibit the HRP-catalyzed oxidation of o-phenylenediamine (OPD) to form 2,3-diaminophenazine (DAP). Hence, the fluorescence resonance energy transfer (FRET) between DAP and MoS2 quantum dots (MQDs) is suppressed.

Keywords

Hydrogen peroxide Fluorometry Ortho-phenylenediamine H2O2 Ratiometric fluorescence Horseradish peroxidase 2,3-diaminophenazine Fluorescence resonance energy transfer 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21775052 and No. 21575048), the Science and Technology Development project of Jilin province, China (No. 20180414013GH).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_3039_MOESM1_ESM.doc (777 kb)
ESM 1 (DOC 777 kb)

References

  1. 1.
    Sahasranaman S, Howard D, Roy S (2008) Clinical pharmacology and pharmacogenetics of thiopurines. Eur J Clin Pharmacol 64(8):753–767CrossRefGoogle Scholar
  2. 2.
    Dubinsky MC, Yang H, Hassard PV, Seidman EG, Kam LY, Abreu MT, Targan SR, Vasiliauskas EA (2002) 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 122(4):904–915CrossRefGoogle Scholar
  3. 3.
    Sparrow MP, Hande SA, Friedman S, Cao D, Hanauer SB (2007) Effect of allopurinol on clinical outcomes in inflammatory bowel disease nonresponders to azathioprine or 6-mercaptopurine. Clin Gastroenterol Hepatol 5(2):209–214CrossRefGoogle Scholar
  4. 4.
    Qiu J, Cheng R, Zhang J, Sun H, Deng C, Meng F, Zhong Z (2017) Glutathione-sensitive hyaluronic acid-mercaptopurine prodrug linked via carbonyl vinyl sulfide: a robust and CD44-targeted nanomedicine for leukemia. Biomacromolecules 18(10):3207–3214CrossRefGoogle Scholar
  5. 5.
    Azimi F, Esmaeilzadeh A, Ramazani A (2015) RETRACTED: clinical significance of ITPA rs67002563 polymorphism in patients with acute lymphoblastic leukemia treated with 6-mercaptopurine. Pharmacol Res 102:61–62CrossRefGoogle Scholar
  6. 6.
    Biparva P, Abedirad SM, Kazemi SY (2015) Silver nanoparticles enhanced a novel TCPO-H(2)O(2)-safraninOchemiluminescence system for determination of 6-mercaptopurine. Spectrochim Acta A Mol Biomol Spectrosc 145:454–460CrossRefGoogle Scholar
  7. 7.
    Cao X (2003) Amperometric determination of 6-mercaptopurine on functionalized multi-wall carbon nanotubes modified electrode by liquid chromatography coupled with microdialysis and its application to pharmacokinetics in rabbit. Talanta 60(5):1063–1070CrossRefGoogle Scholar
  8. 8.
    Zakrzewski R, Borowczyk K, Łuczak A, Młynarski W, Trelińska J (2013) Determination of urinary 6-mercaptopurine and three of its metabolites by HPLC-UV coupled with the iodine-azide reaction. Bioanalysis 5(8):869–877CrossRefGoogle Scholar
  9. 9.
    Fu WL, Zhen SJ, Huang CZ (2014) Controllable preparation of graphene oxide/metal nanoparticle hybrids as surface-enhanced Raman scattering substrates for 6-mercaptopurine detection. RSC Adv 4(31):16327–16332CrossRefGoogle Scholar
  10. 10.
    Wang L, Zhang Z (2008) The study of oxidization fluorescence sensor with molecular imprinting polymer and its application for 6-mercaptopurine (6-MP) determination. Talanta 76(4):768–771CrossRefGoogle Scholar
  11. 11.
    Diamai S, Warjri W, Saha D, Negi DPS (2018) Sensitive determination of 6-mercaptopurine based on the aggregation of phenylalanine-capped gold nanoparticles. Colloids Surf A Physicochem Eng Asp 538:593–599CrossRefGoogle Scholar
  12. 12.
    Rawat KA, Singhal RK, Kailasa SK (2017) One-pot synthesis of silver nanoparticles using folic acid as a reagent for colorimetric and fluorimetric detections of 6-mercaptopurine at nanomolar concentration. Sensors Actuators B Chem 249:30–38CrossRefGoogle Scholar
  13. 13.
    Li Z, Ni Y, Kokot S (2015) A new fluorescent nitrogen-doped carbon dot system modified by the fluorophore-labeled ssDNA for the analysis of 6-mercaptopurine and Hg (II). Biosens Bioelectron 74:91–97CrossRefGoogle Scholar
  14. 14.
    Li BL, Setyawati MI, Zou HL, Dong JX, Luo HQ, Li NB, Leong DT (2017) Emerging 0D transition-metal dichalcogenides for sensors, biomedicine, and clean energy. Small 13(31)CrossRefGoogle Scholar
  15. 15.
    Presolski S, Pumera M (2016) Covalent functionalization of MoS2. Mater Today 19(3):140–145CrossRefGoogle Scholar
  16. 16.
    Gan ZX, Liu LZ, Wu HY, Hao YL, Shan Y, Wu XL, Chu PK (2015) Quantum confinement effects across two-dimensional planes in MoS2 quantum dots. Appl Phys Lett 106(23):233113CrossRefGoogle Scholar
  17. 17.
    Cao H, Wang H, Huang Y, Sun Y, Shi S, Tang M (2016) Quantification of gold (III) in solution and with a test stripe via the quenching of the fluorescence of molybdenum disulfide quantum dots. Microchim Acta 184(1):91–100CrossRefGoogle Scholar
  18. 18.
    Dai W, Dong H, Fugetsu B, Cao Y, Lu H, Ma X, Zhang X (2015) Tunable fabrication of molybdenum disulfide quantum dots for intracellular MicroRNA detection and multiphoton bioimaging. Small 11(33):4158–4164CrossRefGoogle Scholar
  19. 19.
    Dong H, Tang S, Hao Y, Yu H, Dai W, Zhao G, Cao Y, Lu H, Zhang X, Ju H (2016) Fluorescent MoS2 quantum dots: ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl Mater Interfaces 8(5):3107–3114CrossRefGoogle Scholar
  20. 20.
    Sweet C, Pramanik A, Jones S, Ray PC (2017) Two-photon fluorescent molybdenum disulfide dots for targeted prostate Cancer imaging in the biological II window. ACS Omega 2(5):1826–1835CrossRefGoogle Scholar
  21. 21.
    Lin H, Wang C, Wu J, Xu Z, Huang Y, Zhang C (2015) Colloidal synthesis of MoS2 quantum dots: size-dependent tunable photoluminescence and bioimaging. New J Chem 39(11):8492–8497CrossRefGoogle Scholar
  22. 22.
    Ren X, Pang L, Zhang Y, Ren X, Fan H, Liu S (2015) One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J Mater Chem A 3(20):10693–10697CrossRefGoogle Scholar
  23. 23.
    Gu W, Yan Y, Zhang C, Ding C, Xian Y (2016) One-step synthesis of water-soluble MoS2 quantum dots via a hydrothermal method as a fluorescent probe for hyaluronidase detection. ACS Appl Mater Interfaces 8(18):11272–11279CrossRefGoogle Scholar
  24. 24.
    Fahimi-Kashani N, Rashti A, Hormozi-Nezhad MR, Mahdavi V (2017) MoS2 quantum-dots as a label-free fluorescent nanoprobe for the highly selective detection of methyl parathion pesticide. Anal Methods 9(4):716–723CrossRefGoogle Scholar
  25. 25.
    Huang S, Wang L, Huang C, Su W, Xiao Q (2016) Amino-functionalized graphene quantum dots based ratiometric fluorescent nanosensor for ultrasensitive and highly selective recognition of horseradish peroxidase. Sensors Actuators B Chem 234:255–263CrossRefGoogle Scholar
  26. 26.
    Luo L, Song Y, Zhu C, Fu S, Shi Q, Sun Y-M, Jia B, Du D, Xu Z-L, Lin Y (2018) Fluorescent silicon nanoparticles-based ratiometric fluorescence immunoassay for sensitive detection of ethyl carbamate in red wine. Sensors Actuators B Chem 255:2742–2749CrossRefGoogle Scholar
  27. 27.
    Liu H, Wang B, Li D, Zeng X, Tang X, Gao Q, Cai J, Cai HH (2018) MoS2 nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide. Mikrochim Acta 185(6):287CrossRefGoogle Scholar
  28. 28.
    Ma Y, Cen Y, Sohail M, Xu G, Wei F, Shi M, Xu X, Song Y, Ma Y, Hu Q (2017) A Ratiometric fluorescence universal platform based on N, Cu Codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl Mater Interfaces 9(38):33011–33019CrossRefGoogle Scholar
  29. 29.
    Burner U, Obinger C (1997) Transient-state and steady-state kinetics of the oxidation of aliphatic and aromatic thiols by horseradish peroxidase. FEBS Lett 411(2–3):269–274CrossRefGoogle Scholar
  30. 30.
    Guo X, Wang Y, Wu F, Ni Y, Kokot S (2015) A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 140(4):1119–1126CrossRefGoogle Scholar
  31. 31.
    Guo X, Wang Y, Wu F, Ni Y, Kokot S (2015) The use of tungsten disulfide dots as highly selective, fluorescent probes for analysis of nitrofurazone. Talanta 144:1036–1043CrossRefGoogle Scholar
  32. 32.
    Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl Chem 83(12):2213–2228CrossRefGoogle Scholar
  33. 33.
    Huang H, Du C, Shi H, Feng X, Li J, Tan Y, Song W (2015) Water-soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence. Part Part Syst Charact 32(1):72–79CrossRefGoogle Scholar
  34. 34.
    Wang Y, Ni Y (2014) Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection. Anal Chem 86(15):7463–7470CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Analytical Chemistry, College of ChemistryJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of ChemistryNankai UniversityTianjinChina

Personalised recommendations