Advertisement

Microchimica Acta

, 185:439 | Cite as

A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan

  • Md. Zaved H. Khan
  • Xiaoqiang Liu
  • Yunfei Tang
  • Jinhua Zhu
  • Weiping Hu
  • Xiuhua LiuEmail author
Original Paper
  • 272 Downloads

Abstract

A glassy carbon electrode (GCE) was modified with poly(L-arginine) (P-Arg), reduced graphene oxide (rGO) and gold nanoparticle (AuNP) to obtain an electrode for simultaneous determination of dopamine (DA), serotonin (5-HT) and L-tryptophan (L-Trp) in the presence of ascorbic acid (AA). The modified GCE was prepared via subsequent ‘layer-by-layer’ deposition using an electrochemical technique. The surface morphology of the modified electrode was studied by scanning electron microscopy, and electrochemical characterizations were carried out via cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode showed excellent electrocatalytic activity toward DA, 5-HT and L-Trp at pH 7.0. Figures of merit for the differential pulse voltammetric reponse are as follows: (a) Response to DA is linear in two intervals, viz. 1.0–50 nM and 1.0–50 μM DA concentration range, the typical working voltage is 202 mV (vs. Ag/AgCl), and the detection limit is 1 nM (at an S/N ratio of 3). For 5-HT, the respective data are 10 to 500 nM and 1.0 to 10 μM, 381 mV, and 30 nM. For L-Trp, the respective data are 10–70 nM and 10–100 μM, 719 mV, and 0.1 μM. The modified GCE is fairly selective. It was successfully applied to the simultaneous determination of DA, 5-HT, and L-Trp in spiked urine samples, and high recovery rates were found.

Graphical abstract

Schematic presentation of the voltammetric sensor based on a glassy carbon electrode modified with poly(L-arginine), reduced graphene oxide (rGO) and gold nanoparticle (GCE/P-Arg/ErGO/AuNP) for simultaneous determination of dopamine (DA), serotonin (5-HT) and L-tryptophan (L-Trp).

Keywords

Electrochemical sensor Nanocomposite Cyclic voltammetry Differential pulse voltammetry Scanning electron microscopy modified electrode Urine analysis 

Notes

Acknowledgements

We are grateful for financial support from the Joint Fund for Fostering Talents of National Natural Science Foundation of China and Henan province (No. U1204304), College Science and technology innovation team program of Henan Province (No. 14IRTSTHN030).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2979_MOESM1_ESM.docx (317 kb)
ESM 1 (DOCX 316 kb)

References

  1. 1.
    Moccelini SK, Fernandes SC, Vieira IC (2008) Bean sprout peroxidase biosensor based on l-cysteine self-assembled monolayer for the determination of dopamine. Sensors Actuators B Chem 133:364–369.  https://doi.org/10.1016/J.SNB.2008.02.039 CrossRefGoogle Scholar
  2. 2.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430.  https://doi.org/10.1126/science.1147241 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rand E, Periyakaruppan A, Tanaka Z, Zhang DA, Marsh MP, Andrews RJ, Lee KH, Chen B, Meyyappan M, Koehne JE (2013) A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid. Biosens Bioelectron 42:434–438.  https://doi.org/10.1016/j.bios.2012.10.080 CrossRefPubMedGoogle Scholar
  4. 4.
    Han HS, Lee HK, You JM, Jeong H, Jeon S (2014) Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced GO-porphyrin. Sensors Actuators B Chem 190:886–895.  https://doi.org/10.1016/j.snb.2013.09.022 CrossRefGoogle Scholar
  5. 5.
    Tığ GA (2017) Development of electrochemical sensor for detection of ascorbic acid, dopamine, uric acid and l-tryptophan based on ag nanoparticles and poly(l-arginine)-graphene oxide composite. J Electroanal Chem 807:19–28.  https://doi.org/10.1016/J.JELECHEM.2017.11.008 CrossRefGoogle Scholar
  6. 6.
    Yokuş ÖA, Kardaş F, Akyildirim O et al (2016) Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sensors Actuators B Chem 233:47–54.  https://doi.org/10.1016/j.snb.2016.04.050 CrossRefGoogle Scholar
  7. 7.
    Sun Y, Fei J, Hou J, Zhang Q, Liu Y, Hu B (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373–379.  https://doi.org/10.1007/s00604-009-0147-1 CrossRefGoogle Scholar
  8. 8.
    Khan ZH, Nakanishi T, Osaka T (2011) Potentiometric detection of serotonin , melatonin , and their precursors / metabolites with monolayer- modified indium tin oxide electrode and their concentration dependency. Sens Lett 9:1849–1852.  https://doi.org/10.1166/sl.2011.1739 CrossRefGoogle Scholar
  9. 9.
    Wang Y, Ouyang X, Ding Y, Liu B, Xu D, Liao L (2016) An electrochemical sensor for determination of tryptophan in the presence of DA based on poly( <scp>l</scp> −methionine)/graphene modified electrode. RSC Adv 6:10662–10669.  https://doi.org/10.1039/C5RA24116B CrossRefGoogle Scholar
  10. 10.
    Dinesh B, Veeramani V, Chen S-M, Saraswathi R (2017) In situ electrochemical synthesis of reduced graphene oxide-cobalt oxide nanocomposite modified electrode for selective sensing of depression biomarker in the presence of ascorbic acid and dopamine. J Electroanal Chem 786:169–176.  https://doi.org/10.1016/J.JELECHEM.2017.01.022 CrossRefGoogle Scholar
  11. 11.
    Raj M, Gupta P, Goyal RN, Shim Y-B (2017) Graphene/conducting polymer nano-composite loaded screen printed carbon sensor for simultaneous determination of dopamine and 5-hydroxytryptamine. Sensors Actuators B Chem 239:993–1002.  https://doi.org/10.1016/J.SNB.2016.08.083 CrossRefGoogle Scholar
  12. 12.
    Li Y, Li H, Li M, Li C, Sun D, Yang B (2017) Porous boron-doped diamond electrode for detection of dopamine and pyridoxine in human serum. Electrochim Acta 258:744–753.  https://doi.org/10.1016/J.ELECTACTA.2017.11.121 CrossRefGoogle Scholar
  13. 13.
    Ejaz A, Joo Y, Jeon S (2017) Fabrication of 1,4-bis(aminomethyl)benzene and cobalt hydroxide @ graphene oxide for selective detection of dopamine in the presence of ascorbic acid and serotonin. Sensors Actuators B Chem 240:297–307.  https://doi.org/10.1016/J.SNB.2016.08.171 CrossRefGoogle Scholar
  14. 14.
    Wilson TA, Musameh M, Kyratzis IL, Zhang J, Bond AM, Hearn MTW (2017) Enhanced NADH oxidation using Polytyramine/carbon nanotube modified electrodes for ethanol biosensing. Electroanalysis 29:1985–1993.  https://doi.org/10.1002/elan.201700146 CrossRefGoogle Scholar
  15. 15.
    Hasanzadeh M, Mokhtari F, Shadjou N, Eftekhari A, Mokhtarzadeh A, Jouyban-Gharamaleki V, Mahboob S (2017) Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate. Mater Sci Eng C 75:247–258.  https://doi.org/10.1016/j.msec.2017.02.025 CrossRefGoogle Scholar
  16. 16.
    Yi Y, Zhu G, Wu X, Wang K (2016) Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(l-arginine)-β-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode. Biosens Bioelectron 77:353–358.  https://doi.org/10.1016/j.bios.2015.09.052 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou X, Jing W, Zhuang Z, Zheng X (2015) In situ synthesis of gold nanoparticles on poly (L-arginine) modified glassy carbon electrode and Electrocatalytic oxidation of glucose in alkaline solution. ECS Electrochem Lett 4:G5–G7.  https://doi.org/10.1149/2.0071508eel CrossRefGoogle Scholar
  18. 18.
    Devadas B, Cheemalapati S, Chen SM, Ali MA, al-Hemaid FMA (2014) Highly sensing graphene oxide/poly-arginine-modified electrode for the simultaneous electrochemical determination of buspirone, isoniazid and pyrazinamide drugs. Ionics (Kiel) 21:547–555.  https://doi.org/10.1007/s11581-014-1179-z CrossRefGoogle Scholar
  19. 19.
    Khan MZH (2017) Nanoparticles modified ITO based biosensor. J Electron Mater 46:2254–2268.  https://doi.org/10.1007/s11664-016-5172-3 CrossRefGoogle Scholar
  20. 20.
    Khan MZH (2017) Graphene oxide modified electrodes for dopamine sensing. J Nanomater 2017:1–11.  https://doi.org/10.1155/2017/8178314 CrossRefGoogle Scholar
  21. 21.
    Mishra SK, Srivastava AK, Kumar D, Biradar AM, Rajesh (2013) Microstructural and electrochemical impedance characterization of bio-functionalized ultrafine ZnS nanocrystals–reduced graphene oxide hybrid for immunosensor applications. Nanoscale 5:10494.  https://doi.org/10.1039/c3nr02575f CrossRefPubMedGoogle Scholar
  22. 22.
    Moozarm Nia P, Woi PM, Alias Y (2017) Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor. Appl Surf Sci 413:56–65.  https://doi.org/10.1016/j.apsusc.2017.04.043 CrossRefGoogle Scholar
  23. 23.
    Weng H, Liao F, Wang M, Lin M, Ge X (2016) One-pot synthesis of porous au-nanoparticles@polymer/reduced graphene oxide composite microspheres by γ-ray radiation and their application as a recyclable high-performance catalyst. RSC Adv 6:59684–59691.  https://doi.org/10.1039/C6RA11205F CrossRefGoogle Scholar
  24. 24.
    Otari SV, Kumar M, Anwar MZ, Thorat ND, Patel SKS, Lee D, Lee JH, Lee JK, Kang YC, Zhang L (2017) Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep 7:10980.  https://doi.org/10.1038/s41598-017-10777-1 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z (2010) Nanocomposites of size-controlled gold nanoparticles and graphene oxide: formation and applications in SERS and catalysis. Nanoscale 2:2733.  https://doi.org/10.1039/c0nr00473a CrossRefPubMedGoogle Scholar
  26. 26.
    Morioku K, Morimoto N, Takeuchi Y, Nishina Y (2016) Concurrent formation of carbon–carbon bonds and functionalized graphene by oxidative carbon-hydrogen coupling reaction. Sci Rep 6:25824.  https://doi.org/10.1038/srep25824 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Khan MZH, Shahed SMF, Yuta N, Komeda T (2017) Deposition of an Ultraflat graphene oxide Nanosheet on atomically flat substrates. J Electron Mater 46:4160.  https://doi.org/10.1007/s11664-017-5327-x CrossRefGoogle Scholar
  28. 28.
    Du J, Yue R, Ren F et al (2014) Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 53:220–224.  https://doi.org/10.1016/J.BIOS.2013.09.064 CrossRefPubMedGoogle Scholar
  29. 29.
    Sun D, Li H, Li M, Li C, Dai H, Sun D, Yang B (2018) Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sensors Actuators B Chem 259:433–442.  https://doi.org/10.1016/J.SNB.2017.12.037 CrossRefGoogle Scholar
  30. 30.
    Ghoreishi SM, Behpour M, Ghoreishi FS, Mousavi S (2017) Voltammetric determination of tryptophan in the presence of uric acid and dopamine using carbon paste electrode modified with multi-walled carbon nanotubes. Arab J Chem 10:S1546–S1552.  https://doi.org/10.1016/J.ARABJC.2013.05.016 CrossRefGoogle Scholar
  31. 31.
    Liu B, Ouyang X, Ding Y, Luo L, Xu D, Ning Y (2016) Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan. Talanta 146:114–121.  https://doi.org/10.1016/J.TALANTA.2015.08.034 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhuang X, Chen D, Zhang S, et al (2018) Reduced graphene oxide functionalized with a CoS 2 / ionic liquid composite and decorated with gold nanoparticles for voltammetric sensing of dopamine. 2:Google Scholar
  33. 33.
    Yao Z, Yang X, Niu Y, Wu F, Hu Y, Yang Y (2017) Voltammetric dopamine sensor based on a gold electrode modified with reduced graphene oxide and Mn3O4 on gold nanoparticles. Microchim Acta 184:2081–2088.  https://doi.org/10.1007/s00604-017-2210-7 CrossRefGoogle Scholar
  34. 34.
    Liu J, Xie Y, Wang K, Zeng Q, Liu R, Liu X (2017) A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid. Microchim Acta 184:1739–1745.  https://doi.org/10.1007/s00604-017-2185-4 CrossRefGoogle Scholar
  35. 35.
    Chen J, He P, Bai H, He S, Zhang T, Zhang X, Dong F (2017) Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sensors Actuators B Chem 252:9–16.  https://doi.org/10.1016/J.SNB.2017.05.096 CrossRefGoogle Scholar
  36. 36.
    Wang S, Wang Y, Min Q et al (2016) Simultaneous electrochemical determination of dopamine and serotonin in rat cerebrospinal fluid using screen-printed electrode modified with MWNTs-SiO 2 -chitosan composites. Int J Electrochem Sci 11:2360–2376Google Scholar
  37. 37.
    Kaur B, Satpati B, Srivastava R (2015) Synthesis of NiCo 2 O 4 /Nano-ZSM-5 nanocomposite material with enhanced electrochemical properties for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. New J Chem 39:1115–1124.  https://doi.org/10.1039/C4NJ01360C CrossRefGoogle Scholar
  38. 38.
    Narouei FH, Tammandani HK, Ghalandarzehi Y et al (2017) An electrochemical sensor based on conductive polymers/graphite paste electrode for simultaneous determination of dopamine, uric acid and tryptophan in biological samples. Int J Electrochem Sci 12:7739–7753.  https://doi.org/10.20964/2017.08.50 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Md. Zaved H. Khan
    • 1
    • 2
  • Xiaoqiang Liu
    • 1
  • Yunfei Tang
    • 1
  • Jinhua Zhu
    • 1
  • Weiping Hu
    • 1
  • Xiuhua Liu
    • 1
    • 3
    Email author
  1. 1.College of Chemistry and Chemical EngineeringHenan UniversityKaifengChina
  2. 2.Department of Chemical EngineeringJessore University of Science and technologyJessoreBangladesh
  3. 3.Key Laboratory of Natural Medicine and Immune-Engineering of Henan ProvinceKaifengChina

Personalised recommendations