Skip to main content
Log in

Colorimetric aptasensor for Campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a method for colorimetric determination of Campylobacter jejuni (C. jejuni) in milk samples. It is based on the interaction of a specific DNA aptamer with surface protein in the cell membranes of C. jejuni. Specific binding of the aptamer with the cell membrane leads to an uptake of aptamer from solution. As a result, the concentration of aptamer floating in the solution is reduced. In the presence of large quantities of aptamer, the surface of added Au@Pd nanoparticles (NPs) is covered with aptamer via electrostatic interactions. Hence, they cannot act as a peroxidase mimic and oxidize the substrate 3,3,5,5-tetramethylbenzidine (TMB) to give a blue product. However, when the aptamer is bound by the target cells, the surface of the NPs is not blocked by aptamer and the NPs exert a strong peroxidase -like activity. Under defined experimental conditions, the intensity of the blue color increases with the concentration of C. jejuni, and as little as 100 CFU·mL−1 can bedetected in milk.

A colorimetric aptasensor for assay Campylobacter jejuni whole cell in food samples was investigated. This assay was designed based on interaction of specific DNA aptamer with surface protein in c. jejuni cell membrane without any modification of aptamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bolton DJ (2015) Campylobacter virulence and survival factors. Food Microbiol 48:99–108

    Article  Google Scholar 

  2. Fernández H, Vera F, Villanueva MP (2008) García a. Occurrence of Campylobacter species in healthy well-nourished and malnourished children. Braz J Microbiol 39:1–310

    Article  Google Scholar 

  3. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28:687–720

    Article  CAS  Google Scholar 

  4. Yang X, Jeffrey K, Aleksandr S (2013) Campylobacter spp. detection in the 21st century: a review of the recent achievements in biosensor development. J Microbiol Methods 95:148–156

    Google Scholar 

  5. Masdor NA, Altintas Z, Tothill IE (2017) Surface Plasmon resonance Immunosensor for the detection of Campylobacter jejuni. Chemosensors 5:16

    Article  Google Scholar 

  6. Che Y, Li Y, Slavik M (2001) Detection of Campylobacter jejuni in poultry samples using an enzyme-linked immunoassay coupled with an enzyme electrode. Biosens Bioelectron 16:791–797

    Article  CAS  Google Scholar 

  7. Platts-Mills JA, Liu J, Gratz J, Mduma E, Amour C, Swai N, Taniuchi M, Begum S, Penataro Yori P, Tilley DH, Lee G, Shen Z, Whary MT, Fox JG, McGrath M, Kosek M, Haque R, Houpt ER (2014) Detection of campylobacter in stool and determination of significance by culture, enzyme immunoassay, and PCR in developing countries. J Clin Microbiol 52:1074–1080

    Article  CAS  Google Scholar 

  8. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    Article  CAS  Google Scholar 

  9. Masdor NA, Altintas Z, Tothill IE (2016) Sensitive detection of Campylobacter jejuni using nanoparticles enhanced QCM sensor. Biosens Bioelectron 78:328–336

    Article  CAS  Google Scholar 

  10. Ivnitski D, Wilkins E, Tien H, Ottova A (2000) Electrochemical biosensor based on supported planar lipid bilayers for fast detection of pathogenic bacteria. Electrochem Commun 2:457–460

    Article  CAS  Google Scholar 

  11. Huang J, Yang G, Meng W, Wu L, Zhu A, Jiao X (2010) An electrochemical impedimetric immunosensor for label-free detection of Campylobacter jejuni in diarrhea patients’ stool based on O-carboxymethylchitosan surface modified Fe3O4 nanoparticles. Biosens Bioelectron 25:1204–1211

    Article  CAS  Google Scholar 

  12. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21:1192–1199

    Article  CAS  Google Scholar 

  13. Bruno John G, Phillips T, Carrillo MP, Crowell R (2009) Plastic-adherent DNA aptamer- magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19:3427

    Google Scholar 

  14. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2015) Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens Bioelectron 73:108–113

    Article  CAS  Google Scholar 

  15. Rahimi-Nasrabadi M, Mizani F, Hosseini M, Homayoun Keihan A, Ganjali MR (2017) Detection of hydrogen peroxide and glucose by using Tb2(MoO4)3 nanoplates as peroxidase mimics. Spectrochim Acta A 186:82–88

    Article  CAS  Google Scholar 

  16. Pan N, Li-Ying W, Wu LL, Peng CF, Xie ZJ (2017) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of au@Pt core-shell nanohybrids. Microchim Acta 184(1):65–72

    Article  CAS  Google Scholar 

  17. Nirala NR, Prakash R (2018) Quick colorimetric determination of choline in milk and serum based on the use of MoS2 nanosheets as a highly active enzyme mimetic. Microchim Acta 185(4):224

    Article  Google Scholar 

  18. Shokri E, Hosseini M, Davari MD, Ganjali MR, Peppelenbosch MP, Rezaee F (2017) Disulfide-induced self-assembled targets: a novel strategy for the label free colorimetric detection of DNAs/RNAs via unmodified gold nanoparticles. Sci Rep 7:45837

    Article  Google Scholar 

  19. Xu HH, Deng HH, Lin XQ, Wu YY, Lin XL, Peng HP et al (2017) Colorimetric glutathione assay based on the peroxidase-like activity of a nanocomposite consisting of platinum nanoparticles and graphene oxide. Microchim Acta 184(10):3945–3951

    Article  CAS  Google Scholar 

  20. Borghei YS, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2016) Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta 904:92–97

    Article  CAS  Google Scholar 

  21. Huang L, Zhu W, Zhang W, Chen K, Wang J, Wang R et al (2018) Layered vanadium(IV) disulfide nanosheets as a peroxidase-like nanozyme for colorimetric detection of glucose. Microchim Acta 185(1):7

    Article  Google Scholar 

  22. O'sullivan NA, Fallon R, Carroll C, Smith T, Maher M (2000) Detection and differentiation of Campylobacter jejuni and campylobacter coli in broiler chicken samples using a PCR/DNA probe membrane based colorimetric detection assay. Mol Cell Probes 14:17–16

    Article  Google Scholar 

  23. Wuttichote J, Jangpatarapongsa K, Polpanich D, Wonglumsom W (2016) Detection of Campylobacter DNA using magnetic nanoparticles coupled with PCR and a colorimetric end-point system. Food Sci Biotechnol 1:193–198

    Google Scholar 

  24. Zhang Y, Chu W, Dibaji Foroushani A, Wang H, Li D, Liu J, Barrow CJ, Wang X, Yang W (2014) New gold nanostructures for sensor applications: a review. Materials 7:5169–5201

    Article  Google Scholar 

  25. Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093

    Article  CAS  Google Scholar 

  26. Park JY, Jeong HY, Kim MI, Park TJ (2015) Colorimetric detection system for Salmonella typhimurium based on peroxidase-like activity of magnetic nanoparticles with DNA aptamers. J Nanomater 2015:2

    Google Scholar 

  27. Gao F, Goodman DW (2012) Pd–au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem Soc Rev 41(24):8009–8020

    Article  CAS  Google Scholar 

  28. Shahsavar K, Hosseini M, Shokri E, Ganjali MR, Ju H (2017) A sensitive colorimetric aptasensor with a triple-helix molecular switch based on peroxidase-like activity of a DNAzyme for ATP detection. Anal Methods 9:4726–4731

    Article  CAS  Google Scholar 

  29. Hosseini M, Sabet FS, Khabbaz H, Aghazadeh M, Mizani F, Ganjali MR (2017) Enhancement of the peroxidase-like activity of cerium-doped ferrite nanoparticles for colorimetric detection of H2O2 and glucose. Anal Methods 9:3519–3524

    Article  CAS  Google Scholar 

  30. Choleva TG, Gatselou VA, Tsogas GZ, Giokas DL (2018) Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim Acta 185(1):22

    Article  Google Scholar 

  31. Hosseini M, Aghazadeh M, Ganjali MR (2017) A facile one-pot synthesis of cobalt-doped magnetite/graphene nanocomposite as peroxidase mimetics in dopamine detection. New J Chem 41:12678–12684

    Article  CAS  Google Scholar 

  32. Yan J, Huang Y, Zhang C, Fang Z, Bai W, Yan M et al (2017) Aptamer based photometric assay for the antibiotic sulfadimethoxine based on the inhibition and reactivation of the peroxidase-like activity of gold nanoparticles. Microchim Acta 184(1):59–63

    Article  CAS  Google Scholar 

  33. Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Khoobi M, Behzadi H, Hamedani M, Sheikhnejad R (2014) DNA methylation detection by a novel fluorimetric nanobiosensor for early cancer diagnosis. Biosens Bioelectron 15:35–44

    Article  Google Scholar 

  34. Su H, Zhao H, Qiao F, Chen L, Duan R, Ai S (2013) Colorimetric detection of Escherichia coli O157: H7 using functionalized au@ Pt nanoparticles as peroxidase mimetics. Analyst 138:3026–3031

    Article  CAS  Google Scholar 

  35. Sun Z, Zhao Q, Zhang G, Li Y, Zhang G, Zhang F, Fan X (2015) Exfoliated MoS 2 supported au–Pd bimetallic nanoparticles with core–shell structures and superior peroxidase-like activities. RSC Adv 5:10352–10357

    Article  CAS  Google Scholar 

  36. Guo A, Wu D, Ma H, Zhang Y, Li H, Du B, Wei Q (2013) An ultrasensitive enzyme-free electrochemical immunosensor for CA125 using au@ Pd core–shell nanoparticles as labels and platforms for signal amplification. J Mater Chem B 1:4052–4058

    Article  CAS  Google Scholar 

  37. Dwivedi HP, Derike Smiley R, Jaykus LA (2010) Selection and characterization of DNA aptamers with binding selectivity to Campylobacter jejuni using whole-cell SELEX. Appl Microbiol Biotechnol 87:2323–2334

    Article  CAS  Google Scholar 

  38. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem 110:15700–15707

    Article  CAS  Google Scholar 

  39. Yang L, Liu X, Lu Q, Huang N, Liu M, Zhang Y, Yao S (2016) Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant. Anal Chim Acta 930:23–30

    Article  CAS  Google Scholar 

  40. Verma J, Saxena S, Babu SG (2013) ELISA-based identification and detection of microbes. In: Arora D, Das S, Sukumar M (eds) Analyzing microbes. Springer, Berlin, Heidelberg, p 169–186

    Google Scholar 

  41. Chen D, Li C, Liu H, Ye F, Yang J (2015) Core-shell au@ Pd nanoparticles with enhanced catalytic activity for oxygen reduction reaction via core-shell au@ ag/Pd constructions. Sci Rep 5:11949

    Article  Google Scholar 

  42. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PA, Marquis EA, Smith GD, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a ag–Pd core–shell nanocatalyst. Nat Nanotechnol 6(5):302–307

    Article  CAS  Google Scholar 

  43. Chen H, Li Y, Zhang F, Zhang G, Fan X (2011) Graphene supported au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities. J Mater Chem 21:17658–17661

    Article  CAS  Google Scholar 

  44. Yarbakht M, Nikkhah M (2016) Unmodified gold nanoparticles as a colorimetric probe for visual methamphetamine detection. J Exp Nanosci 11(7):593–601

    Article  CAS  Google Scholar 

  45. Bruno JG, Sivils JC (2017) Further characterization and independent validation of a DNA aptamer-quantum dot-based magnetic sandwich assay for Campylobacter. Folia Microbiol 1–6

  46. An H, Jin B (2012) Prospects of nanoparticle–DNA binding and its implications in medical biotechnology. Biotechnol Adv 30:1721–1732

    Article  CAS  Google Scholar 

  47. Wang H, Li Y, Slavik M (2014) Rapid detection of Campylobacter jejuni in poultry products using quantum dots and nanobeads based fluorescent immunoassay. Int J Poult Sci 13:253–259

    Article  Google Scholar 

  48. Suh SH, Dwivedi HP, Jaykus LA (2014) Development and evaluation of aptamer magnetic capture assay in conjunction with real-time PCR for detection of Campylobacter jejuni. LWT Food Sci Technol 56:256–260

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the research Council of University of Tehran (Grant 28645/01/02) and Tehran University of Medical Sciences for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Hosseini.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, Z., Hosseini, M., Mohammadnejad, J. et al. Colorimetric aptasensor for Campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles. Microchim Acta 185, 448 (2018). https://doi.org/10.1007/s00604-018-2976-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2976-2

Keywords

Navigation