Advertisement

Microchimica Acta

, 185:417 | Cite as

A 3-dimensional C/CeO2 hollow nanostructure framework as a peroxidase mimetic, and its application to the colorimetric determination of hydrogen peroxide

  • Nan Wang
  • Jizhou DuanEmail author
  • Weijie Shi
  • Xiaofan Zhai
  • Fang Guan
  • Lihui Yang
  • Baorong Hou
Original Paper
  • 253 Downloads

Abstract

Various 3-dimensional C/CeO2 hollow nanostructure frameworks (3D C/CeO2 HNFs) were synthesized by using a polymer blowing process that is accelerated by adding a certain amount of cerium nitrate. Polyvinylpyrrolidone was used as the polymer. The resulting HNFs were characterized by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. The HNFs possess a large specific surface area, and the CeO2 nanocrystals consist of a single phase. The HNFs display intrinsic peroxidase-like activity and can catalyze the oxidation of the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine in the presence of H2O2 to produce a blue product. The method was applied to the quantification of H2O2 with a 5.2 nM detection limit. The analytical range is from 10 nM to 1 μM.

Graphical abstract

Schematic of the preparation of a 3-dimensional C/CeO2 hollow nanostructure framework by a polyvinylpyrrolidone-blowing process accelerated by Ce(NO3)3. They were applied to H2O2 detection by catalyzing the oxidation of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) to the oxidized 3,3′,5,5′-tetramethylbenzidine (oxTMB) to produce blue-color reaction.

Keywords

Microporous structure Photometry Catalytic activity H2O2 detection 

Notes

Acknowledgements

The present work was supported by the National Key Basic Research Project (No. 2014CB643304) and the National Natural Science Foundation of China (No. 41576080 and No. 41706080).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2957_MOESM1_ESM.doc (141 kb)
ESM 1 (DOC 141 kb)

References

  1. 1.
    Wiggins-Camacho JD, Stevenson KJ (2011) Indirect electrocatalytic degradation of cyanide at nitrogen-doped carbon nanotube electrodes. Environ Sci Technol 45(8):3650–3656.  https://doi.org/10.1021/es104229m CrossRefPubMedGoogle Scholar
  2. 2.
    Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed 45(42):6962–6984.  https://doi.org/10.1002/anie.200503779 CrossRefGoogle Scholar
  3. 3.
    Ju J, Chen W (2015) In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Anal Chem 87(3):1903–1910.  https://doi.org/10.1021/ac5041555 CrossRefPubMedGoogle Scholar
  4. 4.
    Yalfani MS, Contreras S, Medina F, Sueiras J (2009) Phenol degradation by Fenton's process using catalytic in situ generated hydrogen peroxide. Appl Catal B Environ 89(3):519–526.  https://doi.org/10.1016/j.apcatb.2009.01.007 CrossRefGoogle Scholar
  5. 5.
    Assumpção MHMT, Moraes A, De Souza RFB, Gaubeur I, Oliveira RTS, Antonin VS, Malpass GRP, Rocha RS, Calegaro ML, Lanza MRV, Santos MC (2012) Low content cerium oxide nanoparticles on carbon for hydrogen peroxide electrosynthesis. Appl Catal A Gen 411-412:1–6.  https://doi.org/10.1016/j.apcata.2011.09.030 CrossRefGoogle Scholar
  6. 6.
    Kogularasu S, Govindasamy M, Chen S-M, Akilarasan M, Mani V (2017) 3D graphene oxide-cobalt oxide polyhedrons for highly sensitive non-enzymatic electrochemical determination of hydrogen peroxide. Sensors Actuators B Chem 253:773–783.  https://doi.org/10.1016/j.snb.2017.06.172 CrossRefGoogle Scholar
  7. 7.
    Sun Y, He K, Zhang Z, Zhou A, Duan H (2015) Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode. Biosens Bioelectron 68:358–364.  https://doi.org/10.1016/j.bios.2015.01.017 CrossRefPubMedGoogle Scholar
  8. 8.
    Liu J, Bo X, Zhao Z, Guo L (2015) Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells. Biosens Bioelectron 74:71–77.  https://doi.org/10.1016/j.bios.2015.06.042 CrossRefPubMedGoogle Scholar
  9. 9.
    Chaichi MJ, Ehsani M (2016) A novel glucose sensor based on immobilization of glucose oxidase on the chitosan-coated Fe3O4 nanoparticles and the luminol–H2O2–gold nanoparticle chemiluminescence detection system. Sensors Actuators B Chem 223:713–722.  https://doi.org/10.1016/j.snb.2015.09.125 CrossRefGoogle Scholar
  10. 10.
    Liang L, Lan F, Li L, Su M, Ge S, Yu J, Liu H, Yan M (2016) Fluorescence “turn-on” determination of H2O2 using multilayer porous SiO2/NGQDs and PdAu mimetics enzymatic/oxidative cleavage of single-stranded DNA. Biosens Bioelectron 82:204–211.  https://doi.org/10.1016/j.bios.2016.03.076 CrossRefPubMedGoogle Scholar
  11. 11.
    Yuan J, Cen Y, Kong X-J, Wu S, Liu C-L, Yu R-Q, Chu X (2015) MnO2-nanosheet-modified upconversion nanosystem for sensitive turn-on fluorescence detection of H2O2 and glucose in blood. ACS Appl Mater Interfaces 7(19):10548–10555.  https://doi.org/10.1021/acsami.5b02188 CrossRefPubMedGoogle Scholar
  12. 12.
    Li Y, Liu Y, Yang Y, Yu F, Liu J, Song H, Liu J, Tang H, Ye B-C, Sun Z (2015) Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole. ACS Appl Mater Interfaces 7(28):15474–15480.  https://doi.org/10.1021/acsami.5b03755 CrossRefPubMedGoogle Scholar
  13. 13.
    Gürkan R, Ulusoy Hİ, Akçay M (2017) Simultaneous determination of dissolved inorganic chromium species in wastewater/natural waters by surfactant sensitized catalytic kinetic spectrophotometry. Arab J Chem 10:S450–S460.  https://doi.org/10.1016/j.arabjc.2012.10.005 CrossRefGoogle Scholar
  14. 14.
    Kim E, Winkler TE, Kitchen C, Kang M, Banis G, Bentley WE, Kelly DL, Ghodssi R, Payne GF (2017) Redox probing for chemical information of oxidative stress. Anal Chem 89(3):1583–1592.  https://doi.org/10.1021/acs.analchem.6b03620 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang N, Li B, Qiao F, Sun J, Fan H, Ai S (2015) Humic acid-assisted synthesis of stable copper nanoparticles as a peroxidase mimetic and their application in glucose detection. J Mater Chem B 3(39):7718–7723CrossRefGoogle Scholar
  16. 16.
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093.  https://doi.org/10.1039/C3CS35486E CrossRefPubMedGoogle Scholar
  17. 17.
    Song Y, Wang X, Zhao C, Qu K, Ren J, Qu X (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621CrossRefPubMedGoogle Scholar
  18. 18.
    Sun Y, Luo M, Meng X, Xiang J, Wang L, Ren Q, Guo S (2017) Graphene/intermetallic PtPb nanoplates composites for boosting electrochemical detection of H2O2 released from cells. Anal Chem 89(6):3761–3767.  https://doi.org/10.1021/acs.analchem.7b00248 CrossRefPubMedGoogle Scholar
  19. 19.
    Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697.  https://doi.org/10.1039/C1CC11943E CrossRefGoogle Scholar
  20. 20.
    Lim D-H, Lee W-D, Choi D-H, Kwon H-H, Lee H-I (2008) The effect of cerium oxide nanoparticles on a Pt/C electrocatalyst synthesized by a continuous two-step process for low-temperature fuel cell. Electrochem Commun 10(4):592–596.  https://doi.org/10.1016/j.elecom.2008.02.001 CrossRefGoogle Scholar
  21. 21.
    Dyakonov AJ, Little CA (2006) Abatement of CO from relatively simple and complex mixtures: III. Oxidation on Pd–CeO2/C and CeO2/C catalysts. Appl Catal B Environ 67(1):52–59.  https://doi.org/10.1016/j.apcatb.2006.04.017 CrossRefGoogle Scholar
  22. 22.
    Asati A, Santra S, Kaittanis C, Perez JM (2010) Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano 4(9):5321–5331.  https://doi.org/10.1021/nn100816s CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4(10):3261–3267.  https://doi.org/10.1039/C2AY25511A CrossRefGoogle Scholar
  24. 24.
    Fellinger T-P, Hasché F, Strasser P, Antonietti M (2012) Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J Am Chem Soc 134(9):4072–4075.  https://doi.org/10.1021/ja300038p CrossRefPubMedGoogle Scholar
  25. 25.
    Park J, Nabae Y, Hayakawa T, Kakimoto M-A (2014) Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal 4(10):3749–3754.  https://doi.org/10.1021/cs5008206 CrossRefGoogle Scholar
  26. 26.
    Madhu R, Veeramani V, Chen S-M, Manikandan A, Lo A-Y, Chueh Y-L (2015) Honeycomb-like porous carbon–cobalt oxide nanocomposite for high-performance enzymeless glucose sensor and supercapacitor applications. ACS Appl Mater Interfaces 7(29):15812–15820.  https://doi.org/10.1021/acsami.5b04132 CrossRefPubMedGoogle Scholar
  27. 27.
    Wang ZY, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24(14):1903–1911.  https://doi.org/10.1002/adma.201200469 CrossRefPubMedGoogle Scholar
  28. 28.
    Dong YF, Yu ML, Wang ZY, Liu Y, Wang XZ, Zhao ZB, Qiu JS (2016) A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv Funct Mater 26(42):7590–7598.  https://doi.org/10.1002/adfm.201603659 CrossRefGoogle Scholar
  29. 29.
    Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583.  https://doi.org/10.1038/nnano.2007.260 CrossRefPubMedGoogle Scholar
  30. 30.
    Deyhimi F, Nami F (2012) Peroxidase-catalyzed electrochemical assay of hydrogen peroxide: a ping-pong mechanism. In J Chem Kinet 44(10):699–704.  https://doi.org/10.1002/kin.20719 CrossRefGoogle Scholar
  31. 31.
    Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210CrossRefPubMedGoogle Scholar
  32. 32.
    Bai J, Wu L, Wang X, Zhang H-M (2015) Hemoglobin-graphene modified carbon fiber microelectrode for direct electrochemistry and electrochemical H2O2 sensing. Electrochim Acta 185:142–147.  https://doi.org/10.1016/j.electacta.2015.10.100 CrossRefGoogle Scholar
  33. 33.
    Gong T, Liu J, Wu Y, Xiao Y, Wang X, Yuan S (2017) Fluorescence enhancement of CdTe quantum dots by HBcAb-HRP for sensitive detection of H2O2 in human serum. Biosens Bioelectron 92:16–20.  https://doi.org/10.1016/j.bios.2017.01.048 CrossRefPubMedGoogle Scholar
  34. 34.
    Wang Y, Zhang D, Wang J (2018) Metastable α-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2. Mirochim Acta 185(1):1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Nan Wang
    • 1
    • 2
    • 3
    • 4
  • Jizhou Duan
    • 1
    • 3
    • 4
    Email author
  • Weijie Shi
    • 5
  • Xiaofan Zhai
    • 1
    • 3
    • 4
  • Fang Guan
    • 1
    • 3
    • 4
  • Lihui Yang
    • 1
    • 3
    • 4
  • Baorong Hou
    • 1
    • 3
    • 4
  1. 1.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
  4. 4.Center for Ocean Mega-ScienceChinese Academy of SciencesQingdaoPeople’s Republic of China
  5. 5.College of Chemistry and Material ScienceShandong Agricultural UniversityTaianPeople’s Republic of China

Personalised recommendations