Advertisement

Microchimica Acta

, 185:382 | Cite as

Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres

  • Yancai LiEmail author
  • Yingying Jiang
  • Yingying Song
  • Yuhui Li
  • Shunxing Li
Original Paper
  • 342 Downloads

Abstract

A voltammetric sensor is presented for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). It is based on a gold electrode (GE) modified with carboxyl-functionalized graphene (CFG) and silver nanocube functionalized DA nanospheres (AgNC@PDA-NS). The AgNC@PDA-NS nanocomposite was characterized by scanning electron microscopy and UV-Vis spectroscopy. The electrochemical behavior of the modified electrode was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The modified electrode displays good electrocatalytic activity towards DA (typically at 0.14 V vs. Ag/AgCl) and UA (typically at 0.29 V vs. Ag/AgCl) even in the presence of ascorbic acid. Response to DA is linear in the concentration range of 2.5 to 130 μM with a detection limit of 0.25 μM. Response to UA is linear in the concentration range of 10 to 130 μM with a detection limit of 1.9 μM. In addition, the sensitivity for DA and UA is 0.538 and 0.156 μA μM−1 cm−2, respectively. The modified electrode also displays good stability, selectivity and reproducibility.

Graphical abstract

The gold electrode modified with polydopamine nanospheres functionalized with silver nanocube and carboxylated graphene is used for simultaneous determination of DA and UA in the presence of AA, with wide linear range and low detection limit.

Keywords

Silver nanocube Polydopamine nanospheres Carboxyl-functionalized graphene Simultaneous determination Dopamine Uric acid 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21175115), the Natural Science Foundation of Fujian province in China (2016 J01067), and the Innovation Base Foundation for Graduate Students Education of Fujian Province.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2922_MOESM1_ESM.docx (330 kb)
ESM 1 (DOCX 329 kb)

References

  1. 1.
    Chih Y-K, Yang MC (2013) A 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uricacid in the presence of ascorbic acid. Bioelectrochemistry 91:44–51.  https://doi.org/10.1016/j.bioelechem.2013.01.001 CrossRefPubMedGoogle Scholar
  2. 2.
    Abbaspour A, Khajehzadeh A, Ghaffarinejad A (2009) A simple and cost-effective method, as an appropriate alternative for visible spectrophotometry: developm-ent of a dopamine biosensor. Analyst 134:1692–1698.  https://doi.org/10.1039/B901273G CrossRefPubMedGoogle Scholar
  3. 3.
    Kumbhat S, Shankaran DR, Kim SJ, Gobi KV, Joshi V, Miura N (2007) Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule. Biosens Bioelectron 23(3):421–427.  https://doi.org/10.1016/j.bios.2007.05.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Caussé E, Pradelles A, Dirat B, Negre-Salvayre A, Salvayre R, Couderc F (2007) Simultaneous determination of allantoin, hypoxanthine, xanthine, and uric acid in serum/plasma by CE. Electrophoresis 28(3):381–387.  https://doi.org/10.1002/elps.200600205 CrossRefPubMedGoogle Scholar
  5. 5.
    Wang HY, Hui QS, Xu LX, Jiang JG, Sun Y (2003) Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent. Anal Chim Acta 497(1–2):93–99.  https://doi.org/10.1016/j.aca.2003.08.050 CrossRefGoogle Scholar
  6. 6.
    Hadi M, Rouhollahi A (2012) Simultaneous electrochemical sensing of ascorbic acid, dopamine and uric acid at anodized nanocrystalline graphite-like pyrolyticcarbon film electrode. Anal Chim Acta 721:55–60.  https://doi.org/10.1016/j.aca.2012.01.051 CrossRefPubMedGoogle Scholar
  7. 7.
    Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707.  https://doi.org/10.1021/ac202878q CrossRefPubMedGoogle Scholar
  8. 8.
    Gai PB, Zhang HJ, Zhang YS, Liu W, Zhu GB, Zhang XH, Chen JH (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uricacid based on nitrogen doped porous carbon nanopolyhedra. J Mater Chem B 1:2742–2749.  https://doi.org/10.1039/C3TB20215A CrossRefGoogle Scholar
  9. 9.
    O’Neill RD (1994) Microvoltammetric techniques and sensors for monitoringneurochemical dynamics in vivo: a review. Analyst 119(5):767–779.  https://doi.org/10.1039/AN9941900767 CrossRefPubMedGoogle Scholar
  10. 10.
    Xu TQ, Zhang QL, Zheng JN, Lv ZY, Wei J, Wang AJ, Feng JJ (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115(1):109–115.  https://doi.org/10.1016/j.electacta.2013.10.147 CrossRefGoogle Scholar
  11. 11.
    Li SM, Wang YS, S-Ts H, Liao WH, Lin CW, Yang SY, Tien H-W, Ma CC, Hu CC (2015) Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid. J Mater Chem C 3(36):9444–9453.  https://doi.org/10.1039/C5TC01564B CrossRefGoogle Scholar
  12. 12.
    Li H, Wang Y, Ye D, Luo J, Su B, Zhang S, Kong JL (2014) An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 127:255–261.  https://doi.org/10.1016/j.talanta.2014.03.034 CrossRefPubMedGoogle Scholar
  13. 13.
    Liu YL, Ai KL, Liu JH, Deng M, He YY, Lu LH (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25(9):1353–1359.  https://doi.org/10.1002/adma.201204683 CrossRefPubMedGoogle Scholar
  14. 14.
    Yang ZY, Feng JS, Qiao JS, Yan YM, Yu QY, Sun KN (2012) Copper oxide nanoleaves decorated multi-walled carbon nanotube as platform for glucose sensing. Anal Methods 4:1924–1926.  https://doi.org/10.1039/C2AY25283J CrossRefGoogle Scholar
  15. 15.
    Liu YL, Ai KL, Lu LH (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114(9):5057–5115.  https://doi.org/10.1021/cr400407a CrossRefPubMedGoogle Scholar
  16. 16.
    Yoon TH, Park YJ (2013) Polydopamine-assisted carbon nanotubes/Co3O4 composites for rechargeable li-air batteries. J Power Sources 244:344–353.  https://doi.org/10.1016/j.jpowsour.2013.01.023 CrossRefGoogle Scholar
  17. 17.
    Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12(10):693–713.  https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J CrossRefGoogle Scholar
  18. 18.
    Zhang P, Shao CL, Zhang ZY, Zhang MY, Mu JB, Guo ZC, Liu YC (2011) In situ assembly of well-dispersed ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363.  https://doi.org/10.1039/C1NR10405E CrossRefPubMedGoogle Scholar
  19. 19.
    Chen HH, Zhang Z, Cai DQ, Zhang SY, Zhang BL, Tang JL, Wu ZY (2011) A hydrogen peroxide sensor based on ag nanoparticles electrodeposited on natural nano-structure attapulgite modified glassy carbon electrode. Talanta 86:266–270.  https://doi.org/10.1016/j.talanta.2011.09.011 CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang Q, Cobley C, Au L, McKiernan M, Schwartz A, Wen LP, Chen JY, Xia YN (2009) Production of ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Appl Mater Interfaces 1(9):2044–2048.  https://doi.org/10.1021/am900400a CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liu X, Zhang XY, Wang LL, Wang YY (2014) A sensitive electrochemical sensor for paracetamol based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. Microchim Acta 181(11–12):1439–1446.  https://doi.org/10.1007/s00604-014-1289-3 CrossRefGoogle Scholar
  22. 22.
    Siekkinen AR, McLellan JM, Chen JY, Xia YN (2006) Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett 432(4–6):491–496.  https://doi.org/10.1016/j.cplett.2006.10.095 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mock J, Barbic M, Smith D, Schultz D, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759.  https://doi.org/10.1063/1.1462610 CrossRefGoogle Scholar
  24. 24.
    Cao XM, Luo LQ, Ding YP, Zou XL, Bian RX (2008) Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode. Sensors Actuators B Chem 129(2):941–946.  https://doi.org/10.1016/j.snb.2007.10.008 CrossRefGoogle Scholar
  25. 25.
    Temoçin Z (2013) Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid. Sensors Actuators B Chem 176:796–802.  https://doi.org/10.1016/j.snb.2012.09.078 CrossRefGoogle Scholar
  26. 26.
    Cai WH, Lai T, Du HJ, Ye JS (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sensors Actuators B Chem 193:492–500.  https://doi.org/10.1016/j.snb.2013.12.004 CrossRefGoogle Scholar
  27. 27.
    Wang CF, Xu PP, Zhuo KL (2014) Ionic liquid functionalized graphene-based electrochemical biosensor for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid. Electroanalysis 26(1):191–198.  https://doi.org/10.1002/elan.201300345 CrossRefGoogle Scholar
  28. 28.
    Hou JG, Xu CX, Zhao DY, Zhou JH (2016) Facile fabrication of hierarchical nanoporous AuAg alloy and its highlysensitive detection towards dopamine and uric acid. Sensors Actuators B Chem 225:241–248.  https://doi.org/10.1016/j.snb.2015.11.035 CrossRefGoogle Scholar
  29. 29.
    Zhu XH, Liang Y, Zuo XX, Hu RP, Xiao X, Nan JM (2014) Novel water-soluble multi-nanopore graphene modified glassycarbon electrode for simultaneous determination of dopamine anduric acid in the presence of ascorbic acid. Electrochim Acta 143:366–373.  https://doi.org/10.1016/j.electacta.2014.08.044 CrossRefGoogle Scholar
  30. 30.
    Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183:2517–2523.  https://doi.org/10.1007/s00604-016-1897-1 CrossRefGoogle Scholar
  31. 31.
    Wang C, Li J, Shi KY, Wang Q, Zhao X, Xiong ZW, Zou XC, Wang YP (2016) Graphene coated by polydopamine/multi-walled carbon nanotubes modified electrode for highly selective detection of dopamine and uric acid in the presence of ascorbic acid. J Electroanal Chem 770:56–61.  https://doi.org/10.1016/j.jelechem.2016.03.038 CrossRefGoogle Scholar
  32. 32.
    Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I (2017) Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim Acta 184:4603–4610.  https://doi.org/10.1007/s00604-017-2510-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Yancai Li
    • 1
    • 2
    Email author
  • Yingying Jiang
    • 1
  • Yingying Song
    • 1
  • Yuhui Li
    • 1
  • Shunxing Li
    • 1
    • 2
  1. 1.College of Chemistry and EnvironmentMinnan Normal UniversityZhangzhouPeople’s Republic of China
  2. 2.Fujian Province Key Laboratory of Modern Analytical Science and Separation TechnologyMinnan Normal UniversityZhangzhouPeople’s Republic of China

Personalised recommendations