Advertisement

Microchimica Acta

, 185:364 | Cite as

Aptamer-based fluorometric lateral flow assay for creatine kinase MB

  • Jing Zhang
  • Xuefei Lv
  • Wei Feng
  • Xiaoqiong LiEmail author
  • Kunjie Li
  • Yulin Deng
Original Paper

Abstract

A group of aptamers possessing high specificity and affinity for creatine kinase MB (CKMB) was obtained by magnetic systematic evolution of ligands by exponential enrichment. Two aptamers (referred to as C.Apt.21 and C.Apt.30) were found to possess adequately low Kd values. They form a well suited pair for CKMB binding. By using fluorescent microspheres, an aptamer-based lateral flow assay was developed. It is portable, economical, and sensitive. The limit of detection for CKMB is as low as 0.63 ng·mL-1, and the assay works in the 0.005 - 2 μg·mL-1 CKMB concentration range. The method is specific for CKMB, and biomarkers for AMI (such as cardiac troponin I and myoglobin) and serum do not interfere. The strip is highly accurate as shown by analysis of spiked serum samples which gave recoveries ranging between 88 and 117%.

Graphical Abstract

Schematic of the test strip and sandwich aptamer-based fluorometric lateral flow assay for creatine kinease. The detection is based on the specific affinity between CKMB and selected aptamers to form a sandwich structure.

Keywords

CKMB Aptamer Magnetic SELEX Lateral flow Fluorescent microsphere Nanoparticles Rapid detection Test strip reader Sandwich Acute myocardial infarction 

Notes

Acknowledgement

This work was partly supported by the National Special R&D Programmer for Key Scientific Instruments and Equipment (2012YQ04014001) and the Beijing Institute of Technology Research Foundation (3160050321211).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2905_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1278 kb)

References

  1. 1.
    WHO (2014) Cardiovascular diseases. http://www.who.int/cardiovascular_diseases/en/
  2. 2.
    Thygesen K, Alpert JS, White HD (2007) Universal definition of myocardial infarction. Circulation 116(22):2634–2653.  https://doi.org/10.1161/CIRCULATIONAHA.107.187397 CrossRefPubMedGoogle Scholar
  3. 3.
    Lai XH, Liang RL, Liu TC, Dong ZN, Wu YS, Li LH (2016) A fluorescence immunochromatographic assay using europium (III) chelate microparticles for rapid, quantitative and sensitive detection of creatine kinase MB. J Fluoresc 26(3):987–996.  https://doi.org/10.1007/s10895-016-1786-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Friess U, Stark M (2009) Cardiac markers: a clear cause for point-of-care testing. Anal Bioanal Chem 393(5):1453–1462.  https://doi.org/10.1007/s00216-008-2573-z CrossRefPubMedGoogle Scholar
  5. 5.
    Roberts R, Sobel BE, Parker CW (1976) Radioimmunoassay for creatine kinase isoenzymes. Science 194(4267):855–857CrossRefPubMedGoogle Scholar
  6. 6.
    Hammerer-Lercher A, Erlacher P, Bittner R, Korinthenberg R, Skladal D, Sorichter S, Sperl W, Puschendorf B, Mair J (2001) Clinical and experimental results on cardiac troponin expression in Duchenne muscular dystrophy. Clin Chem 47(3):451–458PubMedGoogle Scholar
  7. 7.
    Zhang GJ, Ning Y (2012) Silicon nanowire biosensor and its applications in disease diagnostics: a review. Anal Chim Acta 749:1–15.  https://doi.org/10.1016/j.aca.2012.08.035 CrossRefPubMedGoogle Scholar
  8. 8.
    Chou SF (2013) Development of a manual self-assembled colloidal gold nanoparticle-immunochromatographic strip for rapid determination of human interferon-gamma. Analyst 138(9):2620–2623.  https://doi.org/10.1039/c3an36547f CrossRefPubMedGoogle Scholar
  9. 9.
    Li X, Li W, Yang Q, Gong X, Guo W, Dong C, Liu J, Xuan L, Chang J (2014) Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl Mater Interfaces 6(9):6406–6414.  https://doi.org/10.1021/am5012782 CrossRefPubMedGoogle Scholar
  10. 10.
    Mao X, Wang W, Du T-E (2013) Rapid quantitative immunochromatographic strip for multiple proteins test. Sensors Actuators B Chem 186:315–320.  https://doi.org/10.1016/j.snb.2013.05.083 CrossRefGoogle Scholar
  11. 11.
    Ang SH, Rambeli M, Thevarajah TM, Alias YB, Khor SM (2016) Quantitative, single-step dual measurement of hemoglobin A1c and total hemoglobin in human whole blood using a gold sandwich immunochromatographic assay for personalized medicine. Biosens Bioelectron 78:187–193.  https://doi.org/10.1016/j.bios.2015.11.045 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang Z, Li H, Li C, Yu Q, Shen J, De Saeger S (2014) Development and application of a quantitative fluorescence-based immunochromatographic assay for fumonisin b1 in maize. J Agric Food Chem 62(27):6294–6298.  https://doi.org/10.1021/jf5017219 CrossRefPubMedGoogle Scholar
  13. 13.
    Chen R, Li H, Zhang H, Zhang S, Shi W, Shen J, Wang Z (2013) Development of a lateral flow fluorescent microsphere immunoassay for the determination of sulfamethazine in milk. Anal Bioanal Chem 405(21):6783–6789.  https://doi.org/10.1007/s00216-013-7150-4 CrossRefPubMedGoogle Scholar
  14. 14.
    Torabi F, Mobini Far HR, Danielsson B, Khayyami M (2007) Development of a plasma panel test for detection of human myocardial proteins by capillary immunoassay. Biosens Bioelectron 22(7):1218–1223.  https://doi.org/10.1016/j.bios.2006.04.030 CrossRefPubMedGoogle Scholar
  15. 15.
    Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242.  https://doi.org/10.1016/j.bios.2015.04.041 CrossRefPubMedGoogle Scholar
  16. 16.
    Wang L, Chen W, Ma W, Liu L, Ma W, Zhao Y, Zhu Y, Xu L, Kuang H, Xu C (2011) Fluorescent strip sensor for rapid determination of toxins. Chem Commun (Camb) 47(5):1574–1576.  https://doi.org/10.1039/c0cc04032k CrossRefGoogle Scholar
  17. 17.
    Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem 81(4):1660–1668.  https://doi.org/10.1021/ac8024653 CrossRefPubMedGoogle Scholar
  18. 18.
    Darwish NT, Sekaran SD, Khor SM (2018) Point-of-care tests: a review of advances in the emerging diagnostic tools for dengue virus infection. Sensors Actuators B Chem 255:3316–3331.  https://doi.org/10.1016/j.snb.2017.09.159 CrossRefGoogle Scholar
  19. 19.
    Sajid M, Kawde A-N, Daud M (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19(6):689–705.  https://doi.org/10.1016/j.jscs.2014.09.001 CrossRefGoogle Scholar
  20. 20.
    Cheng S, Yang Y, Ni X, Peng J, Lai W (2017) Fluorescent microspheres lateral flow assay for sensitive detection of the milk allergen casein. Food Agric Immunol 28(6):1017–1028.  https://doi.org/10.1080/09540105.2017.1325841 CrossRefGoogle Scholar
  21. 21.
    Zhang X, Wen K, Wang Z, Jiang H, Beier RC, Shen J (2016) An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M 1 in milk. Food Control 60(2):588–595.  https://doi.org/10.1016/j.foodcont.2015.08.040 CrossRefGoogle Scholar
  22. 22.
    Gui C, Wang K, Li C, Dai X, Cui D (2014) A CCD-based reader combined with CdS quantum dot-labeled lateral flow strips for ultrasensitive quantitative detection of CagA. Nanoscale Res Lett 9(1):1–8.  https://doi.org/10.1186/1556-276X-9-57 CrossRefGoogle Scholar
  23. 23.
    Zeng N, You Y, Xie L, Zhang H, Ye L, Hong W, Li Y, Zeng N, You Y, Xie L (2017) A new imaged-based quantitative reader for the gold immunochromatographic assay. Optik 152:92–99.  https://doi.org/10.1016/j.ijleo.2017.09.109 CrossRefGoogle Scholar
  24. 24.
    Hohenstein J, O’Dell D, Murnane EL, Lu Z, Erickson D, Gay G (2017) Enhancing the usability of an optical reader system to support point-of-care rapid diagnostic testing: an iterative design approach. JHF 4(4):e29.  https://doi.org/10.2196/humanfactors.8621 CrossRefPubMedGoogle Scholar
  25. 25.
    Lee S, Kim G, Moon J (2013) Performance improvement of the one-dot lateral flow immunoassay for aflatoxin b1 by using a smartphone-based reading system. Sensors 13(4):5109–5116.  https://doi.org/10.3390/s130405109 CrossRefPubMedGoogle Scholar
  26. 26.
    Sefah K, Shangguan D, Xiong X, O'Donoghue MB, Tan W (2010) Development of DNA aptamers using Cell-SELEX. Nat Protoc 5(6):1169–1185.  https://doi.org/10.1038/nprot.2010.66 CrossRefPubMedGoogle Scholar
  27. 27.
    Xiao P, Lv X, Wang S, Iqbal J, Qing H, Li Q, Deng Y (2013) An aptamer-based trypsin reactor for on-line protein digestion with electrospray ionization tandem mass spectrometry. Anal Biochem 441(2):123–132.  https://doi.org/10.1016/j.ab.2013.06.012 CrossRefPubMedGoogle Scholar
  28. 28.
    Fialová M, Kypr J, Vorlícková M (2006) The thrombin binding aptamer GGTTGGTGTGGTTGG forms a bimolecular guanine tetraplex. Biochem Biophys Res Commun 344(1):50–54.  https://doi.org/10.1016/j.bbrc.2006.03.144 CrossRefPubMedGoogle Scholar
  29. 29.
    Vianini E, Palumbo M, Gatto B (2001) In vitro selection of DNA aptamers that bind L-tyrosinamide. Bioorg Med Chem 9(10):2543–2548.  https://doi.org/10.1016/S0968-0896(01)00054-2 CrossRefPubMedGoogle Scholar
  30. 30.
    Li S, Huo Y, Tian H, Zhang Q, Lv Y, Hao Z (2015) Invitro selection and characterization of deoxyribonucleic acid aptamers against connective tissue growth factor. Biochem Biophys Res Commun 457(4):640–646.  https://doi.org/10.1016/j.bbrc.2015.01.041 CrossRefPubMedGoogle Scholar
  31. 31.
    Ha NR, Lee SC, Hyun JW, Yoon MY (2016) Development of inhibitory ssDNA aptamers for the FtsZ cell division protein from citrus canker phytopathogen. Process Biochem 51(1):24–33.  https://doi.org/10.1016/j.procbio.2015.11.008 CrossRefGoogle Scholar
  32. 32.
    Di Nardo F, Anfossi L, Giovannoli C, Passini C, Goftman VV, Goryacheva IY, Baggiani C (2016) A fluorescent immunochromatographic strip test using Quantum Dots for fumonisins detection. Talanta 150:463–468.  https://doi.org/10.1016/j.talanta.2015.12.072 CrossRefPubMedGoogle Scholar
  33. 33.
    Liu M, Zeng LF, Yang YJ, Hu LM, Lai WH (2017) Fluorescent microsphere immunochromatographic assays for detecting bone alkaline phosphatase based on biolayer interferometry-selected antibody. RSC Adv 7(52):32952–32959.  https://doi.org/10.1039/C7RA03756B CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jing Zhang
    • 1
  • Xuefei Lv
    • 1
  • Wei Feng
    • 1
  • Xiaoqiong Li
    • 1
    Email author
  • Kunjie Li
    • 1
  • Yulin Deng
    • 1
  1. 1.Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life ScienceBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations