Microchimica Acta

, 185:367 | Cite as

Electrochemical dopamine sensor using a nanoporous gold microelectrode: a proof-of-concept study for the detection of dopamine release by scanning electrochemical microscopy

  • Henry Steven Catota Sáenz
  • Lucas Patricio Hernández-Saravia
  • Jéssica S. G. Selva
  • Anandhakumar Sukeri
  • Patricio Javier Espinoza-MonteroEmail author
  • Mauro BertottiEmail author
Original Paper


Nanoporous gold (NPG) structures were prepared on the surface of a gold microelectrode (Au-μE) by an anodization-reduction method. Cyclic voltammetry and field emission scanning electron microscopy were used to study the electrochemical properties and the morphology of the nanostructured film. Voltammetry showed an improved sensitivity for dopamine (DA) oxidation at this microelectrode when compared to a bare gold microelectrode, with a peak near 0.2 V (vs. Ag/AgCl) at a scan rate of 0.1 V s−1. This is due to the increased surface area and roughness. Square wave voltammetry shows a response that is linear in the 0.1–10 μmol L−1 DA concentration range, with a 30 nmol L-1 detection limit and a sensitivity of 1.18 mA (μmol L−1)−1 cm−2. The sensor is not interfered by ascorbic acid. The reproducibility, repeatability, long-term stability and real sample analysis (spiked urine) were assessed, and acceptable performance was achieved. The “proof-of-concept” detection of dopamine release was demonstrated by using scanning electrochemical microscopy (SECM) with the aim of future applications for single cell analysis.

Graphical abstract

A reproducible electrochemical approach was proposed to fabricate an NPG-microelectrode for DA detection, with enhanced sensitivity and selectivity. Besides, a proof-of-concept detection of DA release was also demonstrated by using SECM.


Anodization-reduction Large surface area Electrocatalytic activity Square wave voltammetry Cyclic voltammetry Single cell analysis 



The authors thank Sao Paulo Research Foundation (FAPESP), CNPq and CAPES for regular final supports. SAK and MB gratefully acknowledged FAPESP and CNPq for the research grants #2014/15215-5 & #2015/20776-9 and 150177/2018-6, respectively. JSGS thanks to CNPq for a PhD fellowship grant #141866/2016-0. HSCS acknowledges to Oficina de Porgramas y Servicios Internacionales, OPSI, of the Escuela Politécnica Nacional for the funding granted for his stay at Institute of Chemistry, USP-Brazil.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2898_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1.01 mb)


  1. 1.
    Ali SR, Ma Y, Parajuli RR et al (2007) A nonoxidative sensor based on a self-doped polyaniline / carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal Chem 79:2583–2587. CrossRefPubMedGoogle Scholar
  2. 2.
    Salamon J, Sathishkumar Y, Ramachandran K et al (2014) One-pot synthesis of magnetite nanorods/graphene composites and its catalytic activity toward electrochemical detection of dopamine. Biosens Bioelectron 64:269–276. CrossRefPubMedGoogle Scholar
  3. 3.
    Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182:1003–1008. CrossRefGoogle Scholar
  4. 4.
    Fotopoulou MA, Ioannou PC (2002) Post-column terbium complexation and sensitized fluorescence detection for the determination of norepinephrine, epinephrine and dopamine using high-performance liquid chromatography. Anal Chim Acta 462:179–185. CrossRefGoogle Scholar
  5. 5.
    Govindaraju S, Ankireddy SR, Viswanath B et al (2017) Fluorescent gold nanoclusters for selective detection of dopamine in cerebrospinal fluid. Sci Rep 7:1–12. CrossRefGoogle Scholar
  6. 6.
    Sun Y, Lin Y, Ding C et al (2018) An ultrasensitive and ultraselective chemiluminescence aptasensor for dopamine detection based on aptamers modified magnetic mesoporous silica @ graphite oxide polymers. Sensors Actuators B Chem 257:312–323. CrossRefGoogle Scholar
  7. 7.
    Kumar SS, Mathiyarasu J, Phani KL (2005) Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine. J Electroanal Chem 578:95–103. CrossRefGoogle Scholar
  8. 8.
    Sajid M, Nazal MK, Mansha M et al (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC - Trends Anal Chem 76:15–29. CrossRefGoogle Scholar
  9. 9.
    Moon JM, Thapliyal N, Hussain KK et al (2018) Conducting polymer-based electrochemical biosensors for neurotransmitters: a review. Biosens Bioelectron 102:540–552. CrossRefPubMedGoogle Scholar
  10. 10.
    Ribeiro JA, Fernandes PMV, Pereira CM, Silva F (2016) Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: a review. Talanta 160:653–679. CrossRefPubMedGoogle Scholar
  11. 11.
    Yusoff N, Pandikumar A, Ramaraj R et al (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114. CrossRefGoogle Scholar
  12. 12.
    Jackowska K, Krysinski P (2013) New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 405:3753–3771. CrossRefPubMedGoogle Scholar
  13. 13.
    Santos CS, Bannitz-Fernandes R, Lima AS et al (2018) Monitoring H2O2 inside aspergillus fumigatus with an integrated microelectrode: the role of peroxiredoxin protein Prx1. Anal Chem 90:2587–2593. CrossRefPubMedGoogle Scholar
  14. 14.
    Paixão TRLC, Barbosa LF, Carrì MT et al (2008) Continuous monitoring of ascorbate transport through neuroblastoma cells with a ruthenium oxide hexacyanoferrate modified microelectrode. Analyst 133:1605–1610. CrossRefPubMedGoogle Scholar
  15. 15.
    Lima AS, Prieto KR, Santos CS et al (2018) In-vivo electrochemical monitoring of H2O2production induced by root-inoculated endophytic bacteria in Agave tequilana leaves. Biosens Bioelectron 99:108–114. CrossRefPubMedGoogle Scholar
  16. 16.
    Hočevar SB, Wang J, Deo RP et al (2005) Carbon nanotube modified microelectrode for enhanced voltammetric detection of dopamine in the presence of ascorbate. Electroanalysis 17:417–422. CrossRefGoogle Scholar
  17. 17.
    Yang C, Jacobs CB, Nguyen MD et al (2016) Carbon nanotubes grown on metal microelectrodes for the detection of dopamine. Anal Chem 88:645–652. CrossRefPubMedGoogle Scholar
  18. 18.
    Ding X, Bai J, Xu T et al (2016) A novel nitrogen-doped graphene fiber microelectrode with ultrahigh sensitivity for the detection of dopamine. Electrochem Commun 72:122–125. CrossRefGoogle Scholar
  19. 19.
    Samba R, Fuchsberger K, Matiychyn I et al (2014) Application of PEDOT-CNT microelectrodes for neurotransmitter sensing. Electroanalysis 26:548–555. CrossRefGoogle Scholar
  20. 20.
    Lupu S, del Campo FJ, Muñoz FX (2010) Development of microelectrode arrays modified with inorganic-organic composite materials for dopamine electroanalysis. J Electroanal Chem 639:147–153. CrossRefGoogle Scholar
  21. 21.
    Tan C, Dutta G, Yin H et al (2018) Detection of neurochemicals with enhanced sensitivity and selectivity via hybrid multiwall carbon nanotube-ultrananocrystalline diamond microelectrodes. Sensors Actuators B Chem 258:193–203. CrossRefGoogle Scholar
  22. 22.
    Ding S, Liu Y, Ma C et al (2018) Development of glass-sealed gold Nanoelectrodes for in vivo detection of dopamine in rat brain. Electroanalysis.
  23. 23.
    Wittstock A, Biener J, Bäumer M (2010) Nanoporous gold: a new material for catalytic and sensor applications. Phys Chem Chem Phys 12:12919–12930. CrossRefPubMedGoogle Scholar
  24. 24.
    Jia F, Yu C, Ai Z, Zhang L (2007) Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity. Chem Mater 19:3648–3653. CrossRefGoogle Scholar
  25. 25.
    Dong H, Cao X (2009) Nanoporous gold thin film: fabrication, structure evolution, and Electrocatalytic activity. J Phys Chem C 113:603–609. CrossRefGoogle Scholar
  26. 26.
    Haupt M, Miller S, Glass R et al (2003) Nanoporous gold films created using templates formed from self-assembled structures of inorganic-block copolymer micelles. Adv Mater 15:829–831. CrossRefGoogle Scholar
  27. 27.
    Cherevko S, Chung CH (2011) Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochem Commun 13:16–19. CrossRefGoogle Scholar
  28. 28.
    Sukeri A, Bertotti M (2017) Electrodeposited honeycomb-like dendritic porous gold surface: an efficient platform for enzyme-free hydrogen peroxide sensor at low overpotential. J Electroanal Chem 805:18–23. CrossRefGoogle Scholar
  29. 29.
    Kumar A, Gonçalves JM, Sukeri A et al (2018) Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sensors Actuators B Chem 263:237–247. CrossRefGoogle Scholar
  30. 30.
    Ikegami M, Hirano Y, Mie Y, Komatsu Y (2016) Fabrication and characterization of nanoporous gold on microelectrode. J Electroanal Chem 783:188–191. CrossRefGoogle Scholar
  31. 31.
    Sukeri A, Saravia LPH, Bertotti M (2015) A facile electrochemical approach to fabricate a nanoporous gold film electrode and its electrocatalytic activity towards dissolved oxygen reduction. Phys Chem Chem Phys 17:28510–28514. CrossRefPubMedGoogle Scholar
  32. 32.
    Sukeri A, Lima AS, Bertotti M (2017) Development of non-enzymatic and highly selective hydrogen peroxide sensor based on nanoporous gold prepared by a simple unusual electrochemical approach. Microchem J 133:149–154. CrossRefGoogle Scholar
  33. 33.
    Jaramillo DXO, Sukeri A, Saravia LPH et al (2017) Nanoporous gold microelectrode: a novel sensing platform for highly sensitive and selective determination of arsenic (III) using anodic stripping voltammetry. Electroanalysis 29:2316–2322. CrossRefGoogle Scholar
  34. 34.
    Zoski CG (2016) Review—advances in scanning electrochemical microscopy (SECM). J Electrochem Soc 163:3088–3100. CrossRefGoogle Scholar
  35. 35.
    Holt KB (2006) Using scanning electrochemical microscopy (SECM) to measure the Electron-transfer kinetics of cytochrome C immobilized on a COOH-terminated Alkanethiol monolayer on a gold electrode. Langmuir 22(9):4298–4304. CrossRefPubMedGoogle Scholar
  36. 36.
    Li MSM, Filice FP, Henderson JD, Ding Z (2016) Probing Cd2+-stressed live cell membrane permeability with various redox mediators in scanning electrochemical microscopy. J Phys Chem C 120:6094–6103. CrossRefGoogle Scholar
  37. 37.
    Takahashi Y (2011) Multifunctional Nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces. Angew Chem Int 50:9638–9642. CrossRefGoogle Scholar
  38. 38.
    Santos CS, Kowaltowski AJ, Bertotti M (2017) Single cell oxygen mapping (SCOM) by scanning electrochemical microscopy uncovers heterogeneous intracellular oxygen consumption. Sci Rep 7:11428. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kurulugama RT et al (2005) Scanning electrochemical microscopy of model neurons: constant distance imaging. Anal Chem 77(4):1111–1117. CrossRefPubMedGoogle Scholar
  40. 40.
    Jeyabharathi C, Ahrens P, Hasse U, Scholz F (2016) Identification of low-index crystal planes of polycrystalline gold on the basis of electrochemical oxide layer formation. J Solid State Electrochem 20:3025–3031. CrossRefGoogle Scholar
  41. 41.
    Sukeri A, Bertotti M (2018) Nanoporous gold surface: an efficient platform for hydrogen evolution reaction at very low overpotential. J Braz Chem Soc 29:226–231. CrossRefGoogle Scholar
  42. 42.
    Szamocki R, Velichko A, Holzapfel C et al (2007) Macroporous Ultramicroelectrodes for improved electroanalytical measurements. Anal Chem 79:533–539. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Henry Steven Catota Sáenz
    • 1
    • 2
  • Lucas Patricio Hernández-Saravia
    • 1
    • 3
  • Jéssica S. G. Selva
    • 1
  • Anandhakumar Sukeri
    • 1
  • Patricio Javier Espinoza-Montero
    • 4
    Email author
  • Mauro Bertotti
    • 1
    Email author
  1. 1.Department of Fundamental Chemistry, Institute of ChemistryUniversity of São PauloSão PauloBrazil
  2. 2.Facultad de Ingeniería Química y AgroindustriaEscuela Politécnica NacionalQuitoEcuador
  3. 3.Department of ChemistryUniversidad de TarapacáAricaChile
  4. 4.Escuela de Ciencias QuímicasPontificia Universidad Católica del EcuadorQuitoEcuador

Personalised recommendations