Microchimica Acta

, 185:360 | Cite as

Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles

  • Yushen Liu
  • Juan Wang
  • Xiuling Song
  • Kun Xu
  • Huisi Chen
  • Chao Zhao
  • Juan Li
Original Paper


The authors describe a rapid colorimetric assay for Listeria monocytogenes (L. monocytogenes) based on the o-phenylenediamine-mediated deaggregation of gold nanoparticles. Silver nanoclusters are used as an artificial enzyme that can oxidize o-phenylenediamine to form o-benzoquinone diamine. Aptamer and IgY antibodies were chosen to conjugate with magnetic beads and silver nanoclusters, respectively, which can recognize and bind L. monocytogenes at different specific binding sites. This results in the disassembly of colloidal gold nanoparticles which is accompanied by a color change from blue to red, with peaks at 730 and 525 nm, respectively. The method allows L. monocytogenes to be colorimetrically determined in the 10 to 106 cfu·mL−1 concentration range without pre-enrichment, and the limit of detection is as low as 10 cfu·mL−1. Recoveries ranging from 97.4 to 101.3% are found when analyzing spiked food samples. The assay is rapid, sensitive and specific.

Graphical abstract

Schematic illustration of a colorimetric method for detection of L. monocytogenes based on silver nanoclusters-catalyzed oxidation of OPD and de-aggregation of GNPs. A color change from blue to red can be observed and correlated to the concentration of L. monocytogenes.


Food safety Visual detection de-aggregation Immunomagnetic separation Nanozyme o-phenylenediamine 



This study was supported by the Chinese National Natural Science Foundation (Grant No. 81602894, 81602895, and 81473018), China Postdoctoral Science Foundation (Grant No. 2017 T100214 and 2016 M591492), the Development Foundation of Science and Technology in Jilin Province of China (Grant No. 20170204003SF) and Graduate Innovation Fund of Jilin University (Grant No. 2017084).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2896_MOESM1_ESM.docx (3.7 mb)
ESM 1 (DOCX 3759 kb)


  1. 1.
    Cole MB, Jones MV, Holyoak C (1990) The effect of pH, salt concentration and temperature on the survival and growth of Listeria monocytogenes. J Appl Bacteriol 69(1):63–72CrossRefPubMedGoogle Scholar
  2. 2.
    Sharma H, Mutharasan R (2013) hlyA gene-based sensitive detection of Listeria monocytogenes using a novel cantilever sensor. Anal Chem 85(6):3222–3228CrossRefPubMedGoogle Scholar
  3. 3.
    Silk BJ, McCoy MH, Iwamoto M, Griffin PM (2014) Foodborne listeriosis acquired in hospitals. Clin Infect Dis 59(4):532–540CrossRefPubMedGoogle Scholar
  4. 4.
    Auvolat A, Besse NG (2016) The challenge of enumerating Listeria monocytogenes in food. Food Microbiol 53(Pt B):135–149CrossRefPubMedGoogle Scholar
  5. 5.
    Lee W, Kwon D, Chung B, Jung GY, Au A, Folch A, Jeon S (2014) Ultrarapid detection of pathogenic bacteria using a 3D immunomagnetic flow assay. Anal Chem 86(13):6683–6688CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Meng X, Li F, Xiong Y, Xu H (2017) Vancomycin modified PEGylated-magnetic nanoparticles combined with PCR for efficient enrichment and detection of Listeria monocytogenes. Sensors Actuators B Chem 247:546–555CrossRefGoogle Scholar
  7. 7.
    Yang X, Zhou X, Zhu M, Xing D (2017) Sensitive detection of Listeria monocytogenes based on highly efficient enrichment with vancomycin-conjugated brush-like magnetic nano-platforms. Biosens Bioelectron 91:238–245CrossRefPubMedGoogle Scholar
  8. 8.
    González-Sálamo J, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MÁ (2016) Nanomaterials as sorbents for food sample analysis. TrAC, Trends Anal Chem 85:203–220CrossRefGoogle Scholar
  9. 9.
    Wu J, Wei X, Gan J, Huang L, Shen T, Lou J, Liu B, Zhang JX, Qian K (2016) Multifunctional magnetic particles for combined circulating tumor cells isolation and cellular metabolism detection. Adv Funct Mater 26(22):4016–4025CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wen CY, Jiang YZ, Li XY, Tang M, Wu LL, Hu J, Pang DW, Zeng JB (2017) Efficient enrichment and analyses of bacteria at ultralow concentration with quick-response magnetic nanospheres. ACS Appl Mater Interfaces 9(11):9416–9425CrossRefPubMedGoogle Scholar
  11. 11.
    Park B, Choi SJ (2017) Sensitive immunoassay-based detection of Vibrio parahaemolyticus using capture and labeling particles in a stationary liquid phase lab-on-a-chip. Biosens Bioelectron 90:269–275CrossRefPubMedGoogle Scholar
  12. 12.
    Suaifan GA, Alhogail S, Zourob M (2017) Paper-based magnetic nanoparticle-peptide probe for rapid and quantitative colorimetric detection of Escherichia coli O157:H7. Biosens Bioelectron 92:702–708CrossRefPubMedGoogle Scholar
  13. 13.
    Wang C, Wang J, Li M, Qu X, Zhang K, Rong Z, Xiao R, Wang S (2016) A rapid SERS method for label-free bacteria detection using polyethylenimine-modified Au-coated magnetic microspheres and Au@Ag nanoparticles. Analyst 141(22):6226–6238CrossRefPubMedGoogle Scholar
  14. 14.
    Jia F, Xu L, Yan W, Wu W, Yu Q, Tian X, Dai R, Li X (2017) A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Microchim Acta 184(5):1539–1545CrossRefGoogle Scholar
  15. 15.
    Srisa-Art M, Boehle KE, Geiss BJ, Henry CS (2018) Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal Chem 90(1):1035–1043CrossRefPubMedGoogle Scholar
  16. 16.
    Wang W, Liu L, Song S, Xu L, Kuang H, Zhu J, Xu C (2017) Identification and quantification of eight Listeria monocytogene serotypes from Listeria spp. using a gold nanoparticle-based lateral flow assay. Microchim Acta 184(3):715–724CrossRefGoogle Scholar
  17. 17.
    Deng J, Yu P, Wang Y, Yang L, Mao L (2014) Visualization and quantification of neurochemicals with gold nanoparticles: opportunities and challenges. Adv Mater 26(40):6933–6943CrossRefPubMedGoogle Scholar
  18. 18.
    Lu S, Zhang X, Chen L, Yang P (2017) Colorimetric visualization of superoxide dismutase in serum via etching of Au nanorods from superoxide radical. Sensors Actuators B Chem 259:1066–1072CrossRefGoogle Scholar
  19. 19.
    Zhang Z, Chen Z, Chen L (2015) Ultrasensitive visual sensing of molybdate based on enzymatic-like etching of gold nanorods. Langmuir 31(33):9253–9259CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang L, Huang R, Liu W, Liu H, Zhou X, Xing D (2016) Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens Bioelectron 86:1–7CrossRefPubMedGoogle Scholar
  21. 21.
    Liu Y, Zhao C, Fu K, Song X, Xu K, Wang J, Li J (2017) Selective turn-on fluorescence detection of Vibrio parahaemolyticus in food based on charge-transfer between CdSe/ZnS quantum dots and gold nanoparticles. Food Control 80:380–387CrossRefGoogle Scholar
  22. 22.
    Liu Y, Zhao C, Song X, Xu K, Wang J, Li J (2017) Colorimetric immunoassay for rapid detection of Vibrio parahaemolyticus. Microchim Acta 184(12):4785–4792CrossRefGoogle Scholar
  23. 23.
    Song Y, Xu G, Wei F, Cen Y, Sohail M, Shi M, Xu X, Ma Y, Ma Y, Hu Q (2018) Aptamer-based fluorescent platform for ultrasensitive adenosine detection utilizing Fe3O4 magnetic nanoparticles and silver nanoparticles. Microchim Acta 185:139CrossRefGoogle Scholar
  24. 24.
    Li XG, Zhang F, Gao Y, Zhou QM, Zhao Y, Li Y, Huo JZ, Zhao XJ (2016) Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens Bioelectron 86:270–276CrossRefPubMedGoogle Scholar
  25. 25.
    Yang J, Zhang Y, Zhang L, Wang H, Nie J, Qin Z, Li J, Xiao W (2017) Analyte-triggered autocatalytic amplification combined with gold nanoparticle probes for colorimetric detection of heavy-metal ions. Chem Commun 53(54):7477–7480CrossRefGoogle Scholar
  26. 26.
    Li F, Zhang H, Wang Z, Newbigging AM, Reid MS, Li XF, Le XC (2015) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87(1):274–292CrossRefPubMedGoogle Scholar
  27. 27.
    Li F, Li J, Tang Y, Wang C, Li XF, Le XC (2016) Targeted enlargement of aptamer functionalized gold nanoparticles for quantitative protein analysis. Proteomes 5(1):1PubMedCentralGoogle Scholar
  28. 28.
    Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105CrossRefPubMedGoogle Scholar
  29. 29.
    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342CrossRefGoogle Scholar
  30. 30.
    Yang X, Wang E (2011) A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper. Anal Chem 83(12):5005–5011CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Public HealthJilin UniversityChangchunChina
  2. 2.The Department of Medical Insurance ManagementThe Second Hospital of Jilin UniversityChangchunChina

Personalised recommendations