Advertisement

Microchimica Acta

, 185:372 | Cite as

Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO2 nanosheets as a donor-acceptor pair

  • Somayeh Mohammadi
  • Abdollah Salimi
Original Paper

Abstract

A fluorometric method is presented for sensitive deternination of microRNA. It is making use of carbon dots (C-dots) loaded with a DNA probe as fluorophore and MnO2 nanosheets as the quenching agent. The blue-green fluorescence of the DNA-loaded C-dots is quenched by the MnO2 nanosheets, but restored on binding target microRNA-155. The maximum excitation wavelength and the maximum emission wavelength of C-dots are at 360 nm and 455 nm, respectively. Fluorescence correlates linearly with the log of the microRNA-155 concentration in two ranges, viz. from 0.15 to 1.65 aM and from 1.65 to 20 aM. The detection limit is as low as 0.1 aM. The assay can discriminate between fully complementary and single-base mismatch microRNA. The assay displayed high specificity when used to detect MCF-7 breast cancer cells which can be detected in concentrations from 1000 to 45,000 cells·mL−1, with a 600 cells·mL−1 detection limit. The method was applied to the analysis of serum samples spiked with microRNA, and satisfactory results were acquired.

Graphical abstract

Schematic of a fluorometric sensing platform for miRNA-155. The method relies on a FRET process between C-dots and MnO2 nanosheets. This strategy has a practical application for detection of miRNA in cell lines and biological fluids.

Keywords

MicroRNA-155 detection Carbon dots MnO2 nanosheets Fluorescence resonance energy transfer MCF-7 cell line Cancer diagnostic 

Notes

Acknowledgements

The financial support of Iranian Nanotechnology Initiative and Research Office of University of Kurdistan (Grant Number 4.1261) are gratefully acknowledged. The authors also thank the Programming and Management Organization of Kurdistan Province for partly financial support (Grant Number 4.53053).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2018_2868_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1.32 mb)

References

  1. 1.
    Wong LL, Wang J, Liew OW, Richards AM, Chen YT (2016) MicroRNA and heart failure. Int J Mol Sci 17(4):502–533CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Liu H, Li L, Wang Q, Duan L, Tang B (2014) Graphene fluorescence switch-based cooperative amplification: a sensitive and accurate method to detection MicroRNA. Anal Chem 86:5487–5493CrossRefPubMedGoogle Scholar
  3. 3.
    Liu L, Chang Y, Xia N, Peng P, Zhang L, Jiang M, Zhang J, Liu L (2017) Simple, sensitive and label-free electrochemical detection of microRNAs based on the in situ formation of silver nanoparticles aggregates for signal amplification. Biosens Bioelectron 94:235–242CrossRefPubMedGoogle Scholar
  4. 4.
    Hosseini M, Akbari A, Ganjali MR, Dadmehr M, Rezayan AH (2015) A novel label-free microRNA-155 detection on the basis of fluorescent silver nanoclusters. J Fluoresc 25(4):925–929CrossRefPubMedGoogle Scholar
  5. 5.
    Cardoso AR, Moreira FTC, Fernandes R, Sales MGF (2016) Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens Bioelectron 80:621–630CrossRefPubMedGoogle Scholar
  6. 6.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Várallyay E, Burgyán J, Havelda Z (2007) Detection of microRNAs by northern blot analyses using LNA probes. Methods 43:140–145CrossRefPubMedGoogle Scholar
  8. 8.
    Lee JM, Jung Y (2011) Two-temperature hybridization for microarray detection of label-free MicroRNAs with Attomole detection and superior specificity. Angew Chem Int Ed Engl 50(52):12487–12490CrossRefPubMedGoogle Scholar
  9. 9.
    Deng H, Liu Q, Wang X, Huang R, Liu H, Lin Q, Zhou X, Xing D (2017) Quantum dots-labeled strip biosensor for rapid and sensitive detection of microRNA based on target-recycled nonenzymatic amplification strategy. Biosens Bioelectron 87:931–940CrossRefPubMedGoogle Scholar
  10. 10.
    Xi Q, Zhou DM, Kan YY, Ge J, ZhK W, Yu RQ, Jiang JH (2014) Highly sensitive and selective strategy for MicroRNA detection based on WS2 Nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal Chem 86:1361–1365CrossRefPubMedGoogle Scholar
  11. 11.
    Li Y, Pu Q, Li J, Zhou L, Tao Y, Li Y, Yu W, Xie G (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 184(11):4323–4330CrossRefGoogle Scholar
  12. 12.
    Zhou Y, Li B, Wang M, Wang J, Yin H, Ai S (2017) Fluorometric determination of microRNA based on strand displacement amplification and rolling circle amplification. Microchim Acta 184(11):4359–4365CrossRefGoogle Scholar
  13. 13.
    Cheng Y, Lei J, Chen Y, Ju H (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens Bioelectron 51:431–436CrossRefPubMedGoogle Scholar
  14. 14.
    Borghei YS, Hosseini M, Ganjali MR (2017) Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchim Acta 184(8):2671–2677CrossRefGoogle Scholar
  15. 15.
    Yu X, Hu L, Zhang F, Wang M, Xia Z, Wei W (2018) MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA. Microchim Acta 185:239–246CrossRefGoogle Scholar
  16. 16.
    Li W, Hou T, Wu M, Li F (2016) Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide. Talanta 148:116–121CrossRefPubMedGoogle Scholar
  17. 17.
    Wang W, Kong T, Zhang D, Zhang J, Cheng G (2015) Label-free MicroRNA detection based on fluorescence quenching of gold nanoparticles with a competitive hybridization. Anal Chem 87(21):10822–10829CrossRefPubMedGoogle Scholar
  18. 18.
    Sun J, Pi F, Ji J, Lei H, Gao Z, Zhang Y, Habimana JD, Li Z, Sun X (2018) Ultrasensitive "FRET-SEF" probe for sensing and imaging MicroRNAs in living cells based on gold Nanoconjugates. Anal Chem 90(5):3099–3108CrossRefPubMedGoogle Scholar
  19. 19.
    Ji X, Lv H, Ma M, Lv B, Ding C (2017) An optical DNA logic gate based on strand displacement and magnetic separation, with response to multiple microRNAs in cancer cell lysates. Microchim Acta 184(8):2505–2513CrossRefGoogle Scholar
  20. 20.
    Zhang H, Wang Q, Yang X, Wang K, Li Q, Li Z, Gao L, Nie W, Zheng Y (2017) An isothermal electrochemical biosensor for the sensitive detection of microRNA based on a catalytic hairpin assembly and supersandwich amplification. Analyst 142:389–396CrossRefPubMedGoogle Scholar
  21. 21.
    Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndic M (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814CrossRefPubMedGoogle Scholar
  22. 22.
    Sipova H, Zhang S, Dudley AM, Galas D, Wang K, Homola J (2010) Surface plasmon resonance biosensor for rapid label-free detection of microribonucleic acid at subfemtomole level. Anal Chem 82:10110–10115CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Driskell JD, Seto AG, Jones LP, Jokela S, Dluhy RA, Zhao YP, Tripp RA (2008) Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS). Biosens Bioelectron 24(4):917–922CrossRefGoogle Scholar
  24. 24.
    Driskell JD, Tripp RA (2010) Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem Commun 46:3298–3300CrossRefGoogle Scholar
  25. 25.
    Ye S, Li X, Wang M, Tang B (2017) Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal Chem 89:5124–5130CrossRefPubMedGoogle Scholar
  26. 26.
    Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA (2015) Nanoparticle probes for the detection of Cancer biomarkers, cells, and tissues by fluorescence. Chem Rev 115(19):10530–10574CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hamd-Qaddareh S, Salimi A (2017) Amplified fluorescent sensing of DNA using luminescent carbon dots and AuNPs/GO as a sensing platform: a novel coupling of FRET and DNA hybridization for homogeneous HIV-1 gene detection at femtomolar level. Biosens Bioelectron 89:773–780CrossRefGoogle Scholar
  28. 28.
    Hamd-Gadareh S, Salimi A, Fathi F, Bahrami S (2017) An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron 98:308–316CrossRefGoogle Scholar
  29. 29.
    Li Z, Lin Z, Wu X, Chen H, Chai Y, Yuan R (2017) Highly efficient Electrochemiluminescence resonance energy transfer system in one nanostructure: its application for ultrasensitive detection of MicroRNA in Cancer cells. Anal Chem 89:6029–6035CrossRefPubMedGoogle Scholar
  30. 30.
    Tu W, Cao H, Zhang L, Bao J, Liu X, Dai Z (2016) Dual signal amplification using gold nanoparticles-enhanced zinc selenide Nanoflakes and P19 protein for ultrasensitive Photoelectrochemical biosensing of MicroRNA in cell. Anal Chem 88:10459–10465CrossRefPubMedGoogle Scholar
  31. 31.
    Cai QY, Li J, Ge J, Zhang L, Hua YL, Li ZH, Qu LB (2015) A rapid fluorescence “switch-on” assay for glutathione detection by using carbon dots–MnO2 nanocomposites. Biosens Bioelectron 72:31–36CrossRefPubMedGoogle Scholar
  32. 32.
    Kudr J, Richtera L, Xhaxhiu K, Hynek D, Heger Z, Zitka Q, Adam V (2017) Carbon dots based FRET for the detection of DNA damage. Biosens Bioelectron 92:133–139CrossRefPubMedGoogle Scholar
  33. 33.
    Jana J, Aditya T, Ganguly M, Pal T (2017) Carbon dot-MnO2 FRET system for fabrication of molecular logic gates. Sensors Actuators B Chem 246:716–725CrossRefGoogle Scholar
  34. 34.
    Zheng M, Li Y, Liu S, Wang W, Xie Z, Jing X (2016) One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and Photothermal Cancer therapy. ACS Appl Mater Interfaces 8:23533–23541CrossRefPubMedGoogle Scholar
  35. 35.
    Yuan Y, Wu S, Shu F, Liu Z (2014) An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun 50:1095–1097CrossRefGoogle Scholar
  36. 36.
    Salimi A, Pourbahram B, Mansouri-Majd S, Hallaj R (2015) Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection. Electrochim Acta 156:207–215CrossRefGoogle Scholar
  37. 37.
    Wang Ch ZW, Wang Y, Yu P, Mao L (2015) MnO2 nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst 140:4021–4029CrossRefGoogle Scholar
  38. 38.
    Zhu Sh MQ, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem Int Ed 52:1–9CrossRefGoogle Scholar
  39. 39.
    ZhL W, Liu ZX, Yuan YH (2017) Carbon dots: materials, synthesis, properties and approaches to long-wavelength and multicolor emission. J Mater Chem B 5:3794–3809CrossRefGoogle Scholar
  40. 40.
    Wu M, Wang Y, Wu W, Hu C, Wang X, Zheng J, Li Z, Jiang B, Qiu J (2014) Preparation of functionalized water-soluble photoluminescent carbon quantum dots from petroleum coke. Carbon 78:480–489CrossRefGoogle Scholar
  41. 41.
    Qu F, Pei H, Kong R, Zhu S, Xia L (2017) Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165:136–142CrossRefPubMedGoogle Scholar
  42. 42.
    Yang K, Zeng M, Fu X, Li J, Ma N, Tao L (2015) Establishing biodegradable single-layer MnO2 nanosheet as amplatform for live cell microRNA sensing. RSC Adv 5:104245–104249CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of KurdistanSanandajIran
  2. 2.Research Center for NanotechnologyUniversity of KurdistanSanandajIran

Personalised recommendations