Skip to main content
Log in

Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have been studied as an electrochemical recognition element for the impedimetric determination of priority polycyclic aromatic hydrocarbons (PAHs) in water, using hexocyanoferrate as a redox probe. For this goal, an indium tin oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying CNTs has been engineered. The electroanalytical method, which is similar to an antibody-antigen assay, is straightforward and exploits the high CNT–PAH affinity obtained via π–interactions. After optimizing the experimental conditions, the resulting CNT-based impedimetric recognition platform exhibits ultra-low detection limits (1.75 ± 0.04 ng·L−1) for the sum of PAHs tested, which was also validated by using a certified reference PAH mixture.

Schematic of an indium-tin-oxide (ITO) electrode functionalized with a silane-based self-assembled monolayer carrying carbon nanotubes (CNTs) as a recognition platform for the ultra-low determination of total polycyclic aromatic hydrocarbons (PAHs) in water via π–interactions using Electrochemical Impedance Spectroscopy (EIS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  2. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1

    PubMed Central  Google Scholar 

  3. Kim K-H, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    Article  CAS  PubMed  Google Scholar 

  4. Bansal V, Kumar P, Kwon EE, Kim K-H (2017) Review of the quantification techniques for polycyclic aromatic hydrocarbons (PAHs) in food products. Crit Rev Food Sci Nutr 57(15):3297–3312

    Article  CAS  PubMed  Google Scholar 

  5. Bruzzoniti MC, Fungi M, Sarzanini C (2010) Determination of EPA's priority pollutant polycyclic aromatic hydrocarbons in drinking waters by solid phase extraction-HPLC. Anal Methods 2:739–745

    Article  CAS  Google Scholar 

  6. Saini SS, Kabir A, Rao ALJ, Malik AK, Furton KG (2017) A novel protocol to monitor trace levels of selected polycyclic aromatic hydrocarbons in environmental water using fabric phase Sorptive extraction followed by high performance liquid chromatography-fluorescence detection. Separations 4(2):22

    Article  Google Scholar 

  7. Poster DL, Schantz MM, Sander LC, Wise SA (2006) Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Anal Bioanal Chem 386:859–881

    Article  CAS  PubMed  Google Scholar 

  8. Andrews AB, Wang D, Marzec KM, Mullins OC, Crozier KB (2015) Surface enhanced Raman spectroscopy of polycyclic aromatic hydrocarbons and molecular asphaltenes. Chem Phys Lett 620:139–143

    Article  CAS  Google Scholar 

  9. Li X, Kaattari SL, Vogelbein MA, Vadas GG, Unger MA (2016) A highly sensitive monoclonal antibody based biosensor for quantifying 3–5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples. Sens Biosensing Res 7:115–120

    Article  PubMed  PubMed Central  Google Scholar 

  10. Du J, Xu J, Sun Z, Jing C (2016) Au nanoparticles grafted on Fe3O4 as effective SERS substrates for label-free detection of the 16 EPA priority polycyclic aromatic hydrocarbons. Anal Chim Acta 915:81–89

    Article  CAS  PubMed  Google Scholar 

  11. Lux G, Langer A, Pschenitza M, Karsunke X, Strasser R, Niessner R, Knopp D, Rant U (2015) Detection of the carcinogenic water pollutant benzo[a]pyrene with an electro-switchable biosurface. Anal Chem 87(8):4538–4545

    Article  CAS  PubMed  Google Scholar 

  12. Lin Y-Y, Liu G, Wai CM, Lin Y (2007) Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons. Electochem Commun 9(7):1547–1552

    Article  CAS  Google Scholar 

  13. Ni Y, Wang P, Song H, Lin X, Kokot S (2014) Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor. Anal Chim Acta 821:34–40

    Article  CAS  PubMed  Google Scholar 

  14. Cho H-H, Smith BA, Wnuk JD, Fairbrother DH, Ball WP (2008) Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environ Sci Technol 42:2899–2905

    Article  CAS  PubMed  Google Scholar 

  15. Del Carlo M, Di Marcello M, Perugini M, Ponzielli V, Sergi M, Mascini M, Compagnone D (2008) Electrocehmical DNA biosensor for polycyclic aromatic hydrocarbons detection. Microchim Acta 163(3–4):163–169

    Article  CAS  Google Scholar 

  16. Muñoz J, Crivillers N, Mas-Torrent M (2017) Carbon-rich monolayers on ITO as highly sensitive platforms for detecting polycyclic aromatic hydrocarbons in water: the case of pyrene. Chem Eur J 23(61):15289–15293

    Article  CAS  PubMed  Google Scholar 

  17. Casalini S, Bortolotti CA, Leonardi F, Biscarini F (2017) Self-assembled monolayers in organic electronics. Chem Soc Rev 46(1):40–71

    Article  CAS  PubMed  Google Scholar 

  18. Chaki NK, Vijayamohanan K (2002) Self-assembled monolayers as a tunable platform for biosensors applications. Biosens Bioelectron 17(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  19. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013

    Article  CAS  PubMed  Google Scholar 

  20. Leyton P, Gómez-Jeria J, Sanchez-Cortes S, Domingo C, Campos-Vallette M (2006) Carbon nanotube bundles as molecular assemblies for the detection of polycyclic aromatic hydrocarbons: surface-enhanced resonance Raman spectroscopy and theoretical studies. J Phys Chem B 110:6470–6474

    Article  CAS  PubMed  Google Scholar 

  21. Ma J, Xiao R, Li J, Yu J, Zhang Y, Chen L (2010) Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography–mass spectrometry. J Chromatogr A 1217:5462–5469

    Article  CAS  PubMed  Google Scholar 

  22. Shen M, Xia X, Wang F, Zhang P, Zhao X (2012) Influences of multiwalled carbon nanotubes and plant residue chars on bioaccumulation of polycyclic aromatic hydrocarbons by Chironomus plumosus larvae in sediment. Environ Toxicol Chem 31:202–209

    Article  CAS  PubMed  Google Scholar 

  23. Thiruppathi M, Thiyagarajan N, Gopinathan M, Zen J-M (2016) Role of defect sites and oxygen functionalities on preanodized screen printed carbon electrode for adsorption and oxidation of polyaromatic hydrocarbons. Electrochem Commun 69:15–18

    Article  CAS  Google Scholar 

  24. Muñoz J, Bastos-Arrieta J, Muñoz M, Muraviev D, Céspedes F, Baeza M (2016) CdS quantum dots as a scattering nanomaterial of carbon nanotubes in polymeric nanocomposite sensors for microelectrode array behavior. J Matter Sci 51(3):1610-1619

  25. Cabana L, González-Campo A, Ke X, Van Tendeloo G, Núñez R, Tobias G (2015) Efficient chemical modification of carbon nanotubes with Metallacarboranes. Chem Eur J 21:16792–16795

    Article  CAS  PubMed  Google Scholar 

  26. Yang K, Zhu L, Xing B (2006) Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol 40(6):1855–1186

    Article  CAS  PubMed  Google Scholar 

  27. Marchante E, Crivillers N, Buhl M, Veciana J, Mas-Torrent M (2016) An electrically driven and readable molecular monolayer switch based on a solid electrolyte. Angew Chem Int Ed 128(1):376–380

    Article  Google Scholar 

  28. Muñoz J, Montes R, Baeza M (2017) Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: characterization, architecture surface and bio-sensing. Trends Anal Chem 97:201–215

    Article  CAS  Google Scholar 

  29. Pumera M (2009) The electrochemistry of carbon nanotubes: fundamentals and applications. Chem Eur J 15(20):4970–4978

    Article  CAS  PubMed  Google Scholar 

  30. Pumera M (2007) Electrochemical properties of double wall carbon nanotube electrodes. Nanoscale Res Lett 2(2):87–93

    Article  CAS  PubMed Central  Google Scholar 

  31. Nielsen T, Siigur K, Helweg C, Jørgensen O, Hansen PE, Kirso U (1997) Sorption of polycyclic aromatic compounds to humic acid as studied by high-performance liquid chromatography. Environ Sci Technol 31(4):1102–1108

    Article  CAS  Google Scholar 

  32. Rajabi M, Moghadam AG, Barfi B, Asghari A (2016) Air-assisted dispersive micro-solid phase extraction of polycyclic aromatic hydrocarbons using a magnetic graphitic carbon nitride nanocomposite. Microchim Acta 183(4):1449–1458

    Article  CAS  Google Scholar 

  33. Tiu BDB, Krupadam RJ, Advincula RC (2016) Pyrene-imprinted polythiophene sensors for detection of polycyclic aromatic hydrocarbons. Sensors Actuators B Chem 228:693–701

    Article  CAS  Google Scholar 

  34. Wang W, Ma R, Wu Q, Wang C, Wang Z (2013) Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography–fluorescence analysis. J Chromatogr A 1293:20–27

    Article  CAS  PubMed  Google Scholar 

  35. Menezes HC, de Barcelos SMR, Macedo DFD, Purceno AD, Machado BF, Teixeira APC, Lago RM, Serp P, Cardeal ZL (2015) Magnetic N-doped carbon nanotubes: a versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Anal Chim Acta 873:51–56

    Article  CAS  PubMed  Google Scholar 

  36. Han Q, Wang Z, Xia J, Chen S, Zhang X, Ding M (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395

    Article  CAS  PubMed  Google Scholar 

  37. Wang W-D, Huang Y-M, Shu W-Q, Cao J (2007) Multiwalled carbon nanotubes as adsorbents of solid-phase extraction for determination of polycyclic aromatic hydrocarbons in environmental waters coupled with high-performance liquid chromatography. J Chromatogr A 1173(1–2):27–36

    Article  CAS  PubMed  Google Scholar 

  38. Fähnrich K, Pravda M, Guilbault G (2003) Disposable amperometric immunosensor for the detection of polycyclic aromatic hydrocarbons (PAHs) using screen-printed electrodes. Biosens Bioelectron 18(1):73–82

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the ERC StG 2012-306826 e-GAMES. The authors also thank the DGI (Spain) project FANCY CTQ2016-80030-R, the Generalitat de Catalunya (2017-SGR-918) and the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centers of Excellence in R&D (SEV-2015-0496). Dr. J. Muñoz gratefully acknowledges the “Juan de la Cierva” programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Mas-Torrent.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 6359 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, J., Navarro-Senent, C., Crivillers, N. et al. Study of carbon nanotube-rich impedimetric recognition electrode for ultra-low determination of polycyclic aromatic hydrocarbons in water. Microchim Acta 185, 255 (2018). https://doi.org/10.1007/s00604-018-2783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2783-9

Keywords

Navigation