Microchimica Acta

, 185:239 | Cite as

MoS2 quantum dots modified with a labeled molecular beacon as a ratiometric fluorescent gene probe for FRET based detection and imaging of microRNA

  • Xinsheng Yu
  • Lianzhe Hu
  • Feng Zhang
  • Min WangEmail author
  • Zhining Xia
  • Weili WeiEmail author
Original Paper


A dual-channel ratiometric nanoprobe is described for detection and imaging of microRNA. It was prepared from MoS2 quantum dots (QDs; with blue emission and excitation/emission peaks at 310/398 nm) which acts as both the gene carrier and as a donor in fluorescence resonance energy transfer (FRET). Molecular beacons containing loops for molecular recognition of microRNA and labeled with carboxyfluorescein (FAM) were covalently attached to the MoS2 QDs and serve as the FRET acceptor. In the absence of microRNA, the nanoprobe exhibits low FRET efficiency due to the close distance between the FAM tag and the QDs. Hybridization with microRNA enlarges the distance between QD and beacon. This results in an enhancement of the FRET efficiency of the nanoprobe. The ratio of green and blue fluorescence (I520/I398) increases linearly in the 5 to 150 nM microRNA concentration range in both aqueous solution and diluted artificial cerebrospinal fluid. The limit of detection (LOD) is as low as 0.38 nM and 0.52 nM, respectively. Other features of this nanoprobe include (a) excellent resistance to nuclease-induced false positive signals and (b) the option to use it for distinguishing different cell lines by in-situ imaging of intracellular microRNAs.

Graphical abstract

Schematic of a dual-channel photoluminescence nanoprobe for the determination of microRNA-21 (miR-21) by monitoring the microRNA-triggered enhancement of the fluorescence resonance energy transfer (FRET) efficiency between MoS2 QDs and carboxyfluorescein-labeled molecular beacons.


MicroRNA-21 Hybridization assay Cell imaging Dual-channel Hybridization Specificity 



This work was financially supported by the National Natural Science Foundation of China (21705012, 21675016) and the Fundamental Research Funds for the Central Universities (106112017CDJXFLX0014).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2773_MOESM1_ESM.docx (809 kb)
ESM 1 (DOCX 809 kb)


  1. 1.
    Lee J-S, Kim S, Na H-K, Min D-H (2016) MicroRNA-responsive drug release system for selective fluorescence imaging and photodynamic therapy in vivo. Adv Healthc Mater 5(18):2386–2395CrossRefGoogle Scholar
  2. 2.
    Qian R-C, Cao Y, Long Y-T (2016) Binary system for MicroRNA-targeted imaging in single cells and Photothermal Cancer therapy. Anal Chem 88(17):8640–8647CrossRefGoogle Scholar
  3. 3.
    Lin S, Gregory RI (2015) MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 15(6):321–333CrossRefGoogle Scholar
  4. 4.
    Hébert SS, De SB (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206CrossRefGoogle Scholar
  5. 5.
    Musilova K, Mraz M (2015) MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia 29(5):1004–1017CrossRefGoogle Scholar
  6. 6.
    Liu R, Chen X, Du Y, Yao W, Shen L, Wang C, Hu Z, Zhuang R, Ning G, Zhang C (2012) Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem 58(3):610–618CrossRefGoogle Scholar
  7. 7.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21CrossRefGoogle Scholar
  8. 8.
    Joshi GK, Deitzmcelyea S, Liyanage T, Lawrence K, Mali S, Sardar R, Korc M (2015) Label-free Nanoplasmonic-based short noncoding RNA sensing at Attomolar concentrations allows for quantitative and highly specific assay of MicroRNA-10b in biological fluids and circulating exosomes. ACS Nano 9(11):11075–11089CrossRefGoogle Scholar
  9. 9.
    Yuan Y-H, Wu Y-D, Chi B-Z, Wen S-H, Lian R-P, Qiu J-D (2017) Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction. Biosens Bioelectron 97:325–331CrossRefGoogle Scholar
  10. 10.
    Guo Q, Bian F, Liu Y, Qu X, Hu X, Sun Q (2017) Hybridization chain reactions on silica coated Qbeads for the colorimetric detection of multiplex microRNAs. Chem Commun 53(36):4954–4957CrossRefGoogle Scholar
  11. 11.
    Kim S, Park JE, Hwang W, Seo J, Lee YK, Hwang JH, Nam JM (2017) Optokinetically encoded Nanoprobe-based multiplexing strategy for MicroRNA profiling. J Am Chem Soc 139(9):3558–3566CrossRefGoogle Scholar
  12. 12.
    Yin BC, Liu YQ, Ye BC (2012) One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. J Am Chem Soc 134(11):5064–5067CrossRefGoogle Scholar
  13. 13.
    Borghei YS, Hosseini M, Ganjali MR (2017) Fluorometric determination of microRNA via FRET between silver nanoclusters and CdTe quantum dots. Microchim Acta 184(12):1–9CrossRefGoogle Scholar
  14. 14.
    Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183(1):297–304CrossRefGoogle Scholar
  15. 15.
    Yang JR, Tang M, Diao W, Cheng WB, Zhang Y, Yan YR (2016) Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode. Microchim Acta 183(11):3061–3067CrossRefGoogle Scholar
  16. 16.
    Zeng K, Li HY, Peng YY (2017) Gold nanoparticle enhanced surface plasmon resonance imaging of microRNA-155 using a functional nucleic acid-based amplification machine. Microchim Acta 184(8):2637–2644CrossRefGoogle Scholar
  17. 17.
    Lee J, Jin YA, Ko HY, Lee YS, Heo H, Cho S, Kim S (2015) Magnetic resonance beacon to detect intracellular microRNA during neurogenesis. Biomaterials 41:69–78CrossRefGoogle Scholar
  18. 18.
    Zhao X, Xu L, Sun M, Ma W, Wu X, Kuang H, Wang L, Xu C (2016) Gold-quantum dot Core–satellite assemblies for lighting up MicroRNA in vitro and in vivo. Small 12(34):4662–4668CrossRefGoogle Scholar
  19. 19.
    Ye S, Li X, Wang M, Tang B (2017) Fluorescence and SERS imaging for the simultaneous absolute quantification of multiple miRNAs in living cells. Anal Chem 89(9):5124–5130CrossRefGoogle Scholar
  20. 20.
    Huang L, Chen Y, Chen L, Xiao X, Wang X, Li J, Zhang Y (2017) Photo-clickable microRNA for in situ fluorescence labeling and imaging of microRNA in living cells. Chem Commun 53(48):6452–6455CrossRefGoogle Scholar
  21. 21.
    Ha HD, Han DJ, Choi JS, Park M, Seo TS (2014) Dual role of blue luminescent MoS2 quantum dots in fluorescence resonance energy transfer phenomenon. Small 10(19):3858–3862CrossRefGoogle Scholar
  22. 22.
    Shi HY, Yang L, Zhou XY, Bai J, Gao J, Jia HX, Li QG (2017) A gold nanoparticle-based colorimetric strategy coupled to duplex-specific nuclease signal amplification for the determination of microRNA. Microchim Acta 184(2):525–531CrossRefGoogle Scholar
  23. 23.
    Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A, Wang C, San L, Fan C, Zuo X (2015) Universal fluorescence biosensor platform based on graphene quantum dots and pyrene-functionalized molecular beacons for detection of MicroRNAs. ACS Appl Mater Interfaces 7(30):16152–16156CrossRefGoogle Scholar
  24. 24.
    Li Y, Pu Q, Li J, Zhou L, Tao Y, Li Y, Yu W, Xie G (2017) An “off-on” fluorescent switch assay for microRNA using nonenzymatic ligation-rolling circle amplification. Microchim Acta 184(11):4323–4330CrossRefGoogle Scholar
  25. 25.
    He L, Lu DQ, Liang H, Xie S, Luo C, Hu M, Xu L, Zhang X, Tan W (2017) Fluorescence resonance energy transfer-based DNA tetrahedron Nano-tweezer for highly reliable detection of tumor-related mRNA in living cells. ACS Nano 11(4):4060–4066CrossRefGoogle Scholar
  26. 26.
    Fu Y, Chen T, Wang G, Gu T, Xie C, Huang J, Li X, Best S, Han G (2017) Production of a fluorescence resonance energy transfer (FRET) biosensor membrane for microRNA detection. J Mater Chem B 5(34):7133–7139CrossRefGoogle Scholar
  27. 27.
    Chen YX, Huang KJ, Niu KX (2018) Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens Bioelectron 99:612–624CrossRefGoogle Scholar
  28. 28.
    Liu LZ, Jiang ST, Wang L, Zhang Z, Xie GM (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly(amidoamine) dendrimer composite with gold and silver nanoclusters. Microchim Acta 182(1–2):77–84CrossRefGoogle Scholar
  29. 29.
    Zhou LL, Wang J, Chen ZP, Li JL, Wang T, Zhang Z, Xie GM (2017) A universal electrochemical biosensor for the highly sensitive determination of microRNAs based on isothermal target recycling amplification and a DNA signal transducer triggered reaction. Microchim Acta 184(5):1305–1313CrossRefGoogle Scholar
  30. 30.
    Yi JT, Chen TT, Huo J, Chu X (2017) Nanoscale Zeolitic Imidazolate Framework-8 for Ratiometric fluorescence imaging of MicroRNA in living cells. Anal Chem 89(22):12351–12359CrossRefGoogle Scholar
  31. 31.
    Li S, Xu L, Sun M, Wu X, Liu L, Kuang H, Xu C (2017) Hybrid nanoparticle pyramids for intracellular dual MicroRNAs Biosensing and Bioimaging. Adv Mater 29(19):1606086CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesChongqing UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Green Synthesis and Applications, College of ChemistryChongqing Normal UniversityChongqingChina

Personalised recommendations