Microchimica Acta

, 185:209 | Cite as

A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite

Original Paper
  • 95 Downloads

Abstract

An ultrasensitive immunosensor for the direct detection of the illegally used livestock feed clebuterol (CLB) is described. It is based on the use of a glassy carbon electrode modified with an MoS2-AuPt nanocomposite and on biotin-streptavidin interaction. The use of MoS2-AuPt accelerates electron transfer, and this leads to a sharp increase in the electrochemical signal for the electrochemical probe hydrogen peroxide. Differential pulse voltammetry was used to record the current signal at a peak potential of −0.18 V (vs SCE). Under optimal conditions, the electrode has a linear response in the 10 pg·mL−1 to 100 ng·mL−1 CLB concentration range and a 6.9 pg·mL−1 detection limit (based on the 3σ criterium). This immunosensor is sensitive, highly specific and acceptably reproducible, and thus represents a valuable tool for the determination of CLB in pork.

Graphical abstract

Schematic of a voltammetric immunosensor for the determination of clenbuterol (CLB) based on the use of a nanocomposite prepared from molybdenum disulfide and a gold-platinum alloy (MoS2-AuPt), and making use of the biotin-streptavidin system.

Keywords

β-Adrenergic agents Biotin-streptavidin system Differential pulse voltammetry Food safety Signal amplification 

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 31071093, 31170129, and 31200064) and the Science and Technology Planning Project of Yuzhong District of Chongqing City, China (No. 20140119).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2746_MOESM1_ESM.docx (2.5 mb)
ESM 1 (DOCX 2558 kb)

References

  1. 1.
    Liu Y, Lu Q, Hu X, Wang H, Li H, Zhang Y, Yao S (2017) A Nanosensor based on carbon dots for recovered fluorescence detection Clenbuterol in pork samples. J Fluoresc 27(5):1847–1853CrossRefGoogle Scholar
  2. 2.
    Lv CZ, Xun Y, Cao Z, Xie JL, Li D, Liu G, Yu L, Feng ZM, Yin YL, Tan SZ (2017) Sensitive determination of toxic Clenbuterol in pig meat and pig liver based on a carbon nanopolymer composite. Food Anal Methods 10(7):1–10CrossRefGoogle Scholar
  3. 3.
    Li Y, Qi P, Ma X, Zhong J (2014) Quick detection technique for clenbuterol hydrochloride by using surface plasmon resonance biosensor. Eur Food Res Technol 239(2):195–201CrossRefGoogle Scholar
  4. 4.
    Yan F, Zhang Y, Zhang S, Zhao J, Liu S, He L, Feng X, Zhang H, Zhang Z (2015) Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182(3–4):855–862CrossRefGoogle Scholar
  5. 5.
    Yang Y, Zhang H, Huang C, Yang D, Jia N (2016) Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS 2 -Au-PEI-hemin layered nanocomposite. Biosens Bioelectron 89(Pt 1):461Google Scholar
  6. 6.
    Chen XB, Wu YL, Yang T (2011) Simultaneous determination of clenbuterol, chloramphenicol and diethylstilbestrol in bovine milk by isotope dilution ultraperformance liquid chromatography-tandem mass spectrometry. J Instrum Anal 879(11):799–803Google Scholar
  7. 7.
    He L, Su Y, Zeng Z, Liu Y, Huang X (2007) Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry. Anim Feed Sci Technol 132(3–4):316–323CrossRefGoogle Scholar
  8. 8.
    Liu B, Yan H, Qiao F, Geng Y (2011) Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection. J Chromatogr B Anal Technol Biomed Life Sci 879(1):90CrossRefGoogle Scholar
  9. 9.
    Shelver WL, Smith DJ (2004) Enzyme-linked immunosorbent assay development for the beta-adrenergic agonist zilpaterol. J Agric Food Chem 52(8):2159–2166CrossRefGoogle Scholar
  10. 10.
    Liu Q, Yang Y, Hui L, Zhu R, Qian S, Yang S, Xu J (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H 2 O 2 and glucose detection. Biosens Bioelectron 64:147–153CrossRefGoogle Scholar
  11. 11.
    Liu Q, Yang Y, Lv X, Ding Y, Zhang Y, Jing J, Xu C (2016) One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H 2 O 2 and glucose colorimetric detection. Sensors Actuators B Chem 240:726–734CrossRefGoogle Scholar
  12. 12.
    Liu Q, Chen P, Xu Z, Chen M, Ding Y, Yue K, Xu J (2017) A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sensors Actuators B Chem 251:339–348CrossRefGoogle Scholar
  13. 13.
    Ji H, Yan F, Lei J, Ju H (2012) Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification. Anal Chem 84(16):7166–7171CrossRefGoogle Scholar
  14. 14.
    Jin H, Yanrong W, Yan C, Zhi Z, Xiaohai Y, Chaoyong James Y, Kemin W, Weihong T (2011) Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed 50(2):401CrossRefGoogle Scholar
  15. 15.
    Lee JU, Jeong JH, Lee DS, Sim SJ (2014) Signal enhancement strategy for a micro-arrayed polydiacetylene (PDA) immunosensor using enzyme-catalyzed precipitation. Biosens Bioelectron 61(6):314–320CrossRefGoogle Scholar
  16. 16.
    Yan M, Bai W, Chao Z, Huang Y, Jiao Y, Chen A (2015) Design of nuclease-based target recycling signal amplification in aptasensors. Biosens Bioelectron 77:613CrossRefGoogle Scholar
  17. 17.
    Tang D, Su B, Tang J, Ren J, Chen G (2010) Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal Chem 82(4):1527–1534CrossRefGoogle Scholar
  18. 18.
    Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS 2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183(9):1–7CrossRefGoogle Scholar
  19. 19.
    Cao X, Wang N, Jia S, Guo L, Li K (2013) Bimetallic AuPt nanochains: synthesis and their application in electrochemical immunosensor for the detection of carcinoembryonic antigen. Biosens Bioelectron 39(1):226–230CrossRefGoogle Scholar
  20. 20.
    Shi H, Zhang Z, Wang Y, Zhu Q, Song W (2011) Bimetallic nano-structured glucose sensing electrode composed of copper atoms deposited on gold nanoparticles. Microchim Acta 173(1–2):85–94CrossRefGoogle Scholar
  21. 21.
    Zhou H, Liu Q, Liu W, Ge J, Lan M, Wang C, Geng J, Wang P (2014) Template-Free Preparation of Volvox-like CdxZn1−xS Nanospheres with Cubic Phase for Efficient Photocatalytic Hydrogen Production. Chem Asian J 9(3):811–818CrossRefGoogle Scholar
  22. 22.
    Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391CrossRefGoogle Scholar
  23. 23.
    Zhu L, Zhang Y, Xu P, Wen W, Li X, Xu J (2016) PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron 80:601–606CrossRefGoogle Scholar
  24. 24.
    Pan N, Wang LY, Wu LL, Peng CF, Xie ZJ (2017) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of Au@Pt core-shell nanohybrids. Microchim Acta 184(1):65–72CrossRefGoogle Scholar
  25. 25.
    Ding Y, Yang B, Liu H, Liu Z, Zhang X, Zheng X, Liu Q (2018) FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B Chem 259:775–783.  https://doi.org/10.1016/j.snb.2017.12.115 CrossRefGoogle Scholar
  26. 26.
    Chen J, Yu C, Zhao Y, Niu Y, Zhang L, Yu Y, Wu J, He J (2017) A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. Biosens Bioelectron 91:892–899CrossRefGoogle Scholar
  27. 27.
    Jiang X, Chen K, Han H (2011) Ultrasensitive electrochemical detection of Bacillus thuringiensis transgenic sequence based on in situ Ag nanoparticles aggregates induced by biotin-streptavidin system. Biosens Bioelectron 28(1):464–468CrossRefGoogle Scholar
  28. 28.
    Zhu Q, Chai Y, Zhuo Y, Yuan R (2015) Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotin-streptavidin signal amplification strategy. Biosens Bioelectron 68(68):42–48CrossRefGoogle Scholar
  29. 29.
    Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Sun C, Wu A (2016) An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184(1):1–7CrossRefGoogle Scholar
  30. 30.
    Chen B, Wang L, Gao S (2016) Development of a disposable label-free impedance Immunosensor for direct and sensitive Clenbuterol determination in pork. Food Anal Methods 9(6):1781–1788CrossRefGoogle Scholar
  31. 31.
    Gan X, Zhao H, Quan X (2017) Two-dimensional MoS2: A promising building block for biosensors. Biosens Bioelectron 89(Pt 1):56CrossRefGoogle Scholar
  32. 32.
    Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Sun C, Wu A (2017) An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184(1):1–7CrossRefGoogle Scholar
  33. 33.
    Chen Q, Yu C, Gao R, Gao L, Li Q, Yuan G, He J (2016) A novel electrochemical immunosensor based on the rGO-TEPA-PTC-NH2 and AuPt modified C60 bimetallic nanoclusters for the detection of Vangl1, a potential biomarker for dysontogenesis. Biosens Bioelectron 79:364–370CrossRefGoogle Scholar
  34. 34.
    Yang T, Chen M, Kong Q, Luo X, Jiao K (2016) Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens Bioelectron 89(Pt 1):538–544Google Scholar
  35. 35.
    Zhang X, Zhao H, Xue Y, Wu Z, Zhang Y, He Y, Li X, Yuan Z (2012) Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosens Bioelectron 34(1):112–117CrossRefGoogle Scholar
  36. 36.
    Liu G, Chen H, Peng H, Song S, Gao J, Lu J, Ding M, Li L, Ren S, Zou Z (2011) A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. Biosens Bioelectron 28(1):308–313CrossRefGoogle Scholar
  37. 37.
    Zhang Z, Duan F, He L, Peng D, Yan F, Wang M, Zong W, Jia C (2016) Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchim Acta 183(3):1089–1097CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Public Health and ManagementChongqing Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations