Microchimica Acta

, 185:197 | Cite as

Effect of silica surface coating on the luminescence lifetime and upconversion temperature sensing properties of semiconductor zinc oxide doped with gallium(III) and sensitized with rare earth ions Yb(III) and Tm(III)

  • Yuemei Li
  • Yongmei Li
  • Rui WangEmail author
  • Wei Zheng
Original Paper


Optical sensing of temperature by measurement of the ratio of the intensities of the 700 nm emission and the 800 nm emission of Ga(III)-doped ZnO (GZO) nanoparticles (NPs) and of GZO NPs coated with a silica shell are demonstrated at 980 nm excitation. It is found that the relative sensitivity of SiO2@Yb/Tm/GZO is 6.2% K−1 at a temperature of 693 K. This is ~3.4 times higher than that of Yb/Tm/GZO NPs. Obviously, the SiO2 shell structure decreases the rate of the nonradiative decay. The decay time of the 800 nm emission of the Yb/Tm/GZO NPs (15 mol% Ga; 7 mol% Yb; 0.5 mol% Tm) displays a biexponential decay with a dominant decay time of 148 μs and a second decay time of ~412 μs. The lifetime of the Yb/Tm/GZO NPs at 293 K, and of the SiO2@Yb/Tm/GZO NPs are ~412 μs. Both the Yb/Tm/GZO and SiO2@Yb/Tm/GZO can be used up to 693 K. These results indicate that the SiO2 shell on the Yb/Tm/GZO is beneficial in terms of sensitivity and resolution.

Graphical abstract

The enhancement the decay time and thermal sensitivity in the SiO2@Yb/Tm/GZO shell@core structure have been studied compared to the Ga(III)-doped Yb/Tm-doped ZnO (Yb/Tm/GZO). The SiO2@Yb/Tm/GZO have good thermal accuracy up to 693 °C.


Core@shell structure Upconversion luminescence Fluorescence lifetime Relative sensor sensitivity 


Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2018_2733_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)


  1. 1.
    Xu W, Gao X, Zheng L (2012) An optical temperature sensor based on the upconversion luminescence from Tm3+/Yb3+ codoped oxyfluoride glass ceramic. Sensors Actuators B Chem 173:250–253. CrossRefGoogle Scholar
  2. 2.
    Rai VK (2007) Temperature sensors and optical sensors. Appl Phys B Lasers Opt 88:297–303. CrossRefGoogle Scholar
  3. 3.
    Xing L, Yang W, Ma D, Wang R (2015) Effect of crystallinity on the optical thermometry sensitivity of Tm3+/Yb3+ codoped LiNbO3 crystal. Sensors Actuators B Chem 221:485–462. Google Scholar
  4. 4.
    Yang Y, Ou C, Angerhofer A (2006) Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J Am Chem Soc 128:12428–12429. CrossRefGoogle Scholar
  5. 5.
    Luo W, Wang Y, Chen Y (2013) The synthesis, crystal structure and multicolour up-conversion fluorescence of Yb3+/Ln3+ (Ln =Ho, Er, Tm) codoped orthorhombic lutetium oxyfluorides. J Mater Chem C 1:5711–5717. CrossRefGoogle Scholar
  6. 6.
    Lee DE, Koo H, Sun IC, Ryu JH, Kim K, Kwon IC (2012) Facile method to radiolabel glycol chitosan nanoparticles with 64Cu via copper-free click chemistry for MicroPET imaging. Chem Soc Rev 41:2656–2672. CrossRefGoogle Scholar
  7. 7.
    Li DY, Wang YX, Zhang X, Yang K, Liu L, Song YL (2012) Optical temperature sensor through infrared excited blue upconversion emission in Tm3+ /Yb3+ codoped Y2O3. Opt Commun 285:1925–1928. CrossRefGoogle Scholar
  8. 8.
    Du P, Luo LH, Li WP, Yue QY, Chen HB (2014) Optical temperature sensor based on upconversion emission in Er-doped ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic. Appl Phys Lett 104:152902–152911. CrossRefGoogle Scholar
  9. 9.
    Dong B, Cao BS, He YY, Liu Z, Li ZP, Feng ZQ (2012) Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv Mater 24:1987–1993. CrossRefGoogle Scholar
  10. 10.
    Wu K, Cui J, Kong W, Wang Y (2011) Temperature dependent upconversion luminescence of Yb/Er codoped NaYF4 nanocrystals. J Appl Phys 110:139. Google Scholar
  11. 11.
    Wang XD, Wolfbeis OS, Meier RJ (2013) Luminescent probes and sensors for temperature. Chem Soc Rev 42:7834–7869. CAPLUS. CrossRefGoogle Scholar
  12. 12.
    Kumari A, Pandey A, Rey R, Rai VK (2014) Simultaneous influence of Zn /mg on the luminescent behaviour of La O :Tm –Yb phosphors. RSC Adv 4:21844–21851. CrossRefGoogle Scholar
  13. 13.
    Soni AK, Rai VK (2014) Intrinsic optical bistability and frequency upconversion in Tm3+-Yb3+-codoped Y2WO6 phosphor. Dalton Trans 43:13563–13570. CrossRefGoogle Scholar
  14. 14.
    Yang Y, Mi C, Yu F, Su X, Guo C, Li G, Zhang J, Liu L, Liu Y, Li X (2014) Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor. Ceram Int 40:9875–9880. CrossRefGoogle Scholar
  15. 15.
    Ziel JP, Ostermayer FW, Uitert LG (1970) Infrared excitation of visible luminescence in Y1-xErxF3 via resonant energy transfer. Phys Rev B 2:4432–4441. CrossRefGoogle Scholar
  16. 16.
    Wang J, Dong B, Chen B (2013) Glutathione modified gold nanorods with excellent biocompatibility and weak protein adsorption, targeting imaging and therapy toward tumor cells. Dalton Trans 42:11548–11558. CrossRefGoogle Scholar
  17. 17.
    Li Y, Li Y, Wang R (2017) First-principles calculation of phase/size characteristic in Yb3+/Tm3+/ZnO Upconversion nanoparticles through metal Ga3+ doping. Chemistry 2:4433–4438. CrossRefGoogle Scholar
  18. 18.
    Li Y, Wang R, Xu Y, Zhou J, Liu Z, Yan X, Ma L (2016) Structural characterizations and up-conversion emission in Yb3+/Tm3+ co-doped ZnO nanocrystals by tri-doping with Ga3+ ions. RSC Adv 6:111052–111059. CrossRefGoogle Scholar
  19. 19.
    Pires A, Heer S, Güdel H, Serra O (2006) Er, Yb doped yttrium based nanosized phosphors: particle size, "host lattice" and doping ion concentration effects on upconversion efficiency. J Fluoresc 16:461–468. CrossRefGoogle Scholar
  20. 20.
    Dennis K, Michael UK (2015) Temperature dependence of rate constants for Tb3+(5D3) Cross relaxation in symmetric Tb3+ pairs in Tb-Doped CsCdBr3, CsMgBr3, CsMgCl3. J Phys Chem C 119:4002–4011. Google Scholar
  21. 21.
    Keal TW, Tozer DJ (2005) Semiempirical hybrid functional with improved performance in an extensive chemical assessment. J Phys Chem 123:121103. CrossRefGoogle Scholar
  22. 22.
    Wang Y, Tu L, Zhao J, Sun Y, Kong X, Zhang H (2009) Near-infrared to visible Upconversion in Er3+ and Yb3+ Codoped Lu2O3 Nanocrystals: enhanced red color Upconversion and three-photon process in green color Upconversion. J Phys Chem C 113:4413–4418. Google Scholar
  23. 23.
    Wang X, Kong X, Yu Y, Sun Y, Zhang H (2007) Effect of annealing on Upconversion luminescence of ZnO: Er3+ Nanocrystals and high thermal sensitivity. J Phys Chem C 111:15911–15124. Google Scholar
  24. 24.
    Li Y, Li YM, Wang R, Xu YL (2017) Enhancing Upconversion luminescence by annealing processes and high temperature sensing of ZnO:Yb/Tm nanoparticles. N J Chem 41:7116–7122. CrossRefGoogle Scholar
  25. 25.
    Fischer S, Bronstein ND, Swabeck JK, Chan EM, Alivisatos AP (2016) Precise tuning of surface quenching for luminescence enhancement in Core–Shell lanthanide-doped Nanocrystals. Nano Lett 16:7241–7247. CrossRefGoogle Scholar
  26. 26.
    Sedlmeier A, Achatz DE, Fischer LH (2012) Photon upconverting nanoparticles for luminescent sensing of temperature. Nano 4:7090–7096. Google Scholar
  27. 27.
    Jing T, Jian L, Torad NL (2014) Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 9:305–323. CrossRefGoogle Scholar
  28. 28.
    Ramasamy P, Chandra P, Rhee SW (2013) Enhanced upconversion luminescence in NaGdF4:Yb, Er nanocrystals by Fe3+ doping and their application in bioimaging. Nano 5:8711–8717. Google Scholar
  29. 29.
    Ge X, Sun L, Dang S (2015) Mesoporous upconversion nanoparticles modified with a Tb(III) complex to display both green upconversion and downconversion luminescence for in vitro bioimaging and sensing of temperature. Microchim Acta 182:1653–1660. CrossRefGoogle Scholar
  30. 30.
    Lu H, Hao H, Gao Y (2017) Optical sensing of temperature based on non-thermally coupled levels and upconverted white light emission of a Gd2(WO4)3 phosphor co-doped with in Ho(III), Tm(III), and Yb(III)[J]. Mikrochimica Acta 84(2)Google Scholar
  31. 31.
    Su Q, Han S, Xie X, Zhu H, Chen H, Chen CK, Liu RS, Chen X, Wang F, Liu X (2012) The effect of surface coating on energy migration-mediated upconversion. J Am Chem Soc 134:20849–20857. CrossRefGoogle Scholar
  32. 32.
    Vetrone F, Naccache RV, Mahalingam C, Morgan G, Capobianco JA (2009) The active-Core/active-Shell approach: a strategy to enhance the Upconversion luminescence in lanthanide-doped nanoparticles. Adv Funct Mater 19:2924–2929. CrossRefGoogle Scholar
  33. 33.
    Huang Y, Rosei F, Vetrone F (2015) A single multifunctional nanoplatform based on upconversion luminescence and gold nanorods. Nano 7:5178–5185. Google Scholar
  34. 34.
    Xie Z, Markus TZ, Gotesman G (2011) How isolated are the electronic states of the core in core/shell nanoparticles? ACS Nano 5:863–869. CrossRefGoogle Scholar
  35. 35.
    Dong B, Hua RN, Cao BS, Li ZP, He YY, Wolfbeis OS (2014) Size dependence of the Upconverted luminescence of NaYF4:nnYb microspheres for use in Ratiometric thermometry. Phys Chem Chem Phys 16:20009–20012. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital & Tianjin Institute of EndocrinologyTianjin Medical UniversityTianjinChina

Personalised recommendations