Advertisement

Microchimica Acta

, 185:165 | Cite as

Aptamer-based determination of tumor necrosis factor α using a screen-printed graphite electrode modified with gold hexacyanoferrate

  • Maryam Hosseini Ghalehno
  • Mohammad Mirzaei
  • Masoud Torkzadeh-Mahani
Original Paper

Abstract

An aptamer based method is presented for the voltammetric determination of human tumor necrosis factor alpha (TNF-α). Layers of gold hexacyanoferrate (AuHCF) and gold nanoparticles (AuNPs) were directly immobilized on a graphite screen-printed electrode (SPE). Through the strong interaction between cyanide ions (CN) of AuHCF and AuNPs, gold nanoparticles are assembled on the modified SPE, and this allows for the covalent immobilization of thiolated aptamers against TNF-α (TNF-α-Apt). On incubation of the aptasensor with of TNF-α, the Apt/TNF-α complex is formed, and this leads to a hindered electron transfer and to a decrease in the peak current of the redox probe. Under optimum conditions and at a typical working as low as 0.1 V (vs. a silver pseudo electrode), the electrode works in the 10 pg.mL−1 to 40 μg.mL−1 TNF-α concentration range, with a 5.5 pg.mL−1 detection limit. The high sensitivity and wide detection range of this method allowed TNF-α to in human serum be detected even at very low concentrations.

Graphical abstract

Schematic diagram for fabrication of aptasensor: (a,b) formation of AuHCF film by electrodeposition; (c) assembled AuNPs; (d) TNF-α–aptamer loading; (e) blocking of nonspecific sites with 1-HT; and (f) binding to TNF-α

Keywords

Bioassay Aptasensor Electrochemical assay Differential pulse voltammetry Electrochemical impedance 

Notes

Acknowledgments

The authors wish to thank the Research Council of Shahid Bahonar University of Kerman and Graduate University of Advanced Technology of Kerman.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2704_MOESM1_ESM.docx (72 kb)
ESM 1 (DOCX 71 kb)

References

  1. 1.
    Chang R, Yee K-L, Sumbria RK (2017) Tumor necrosis factor α Inhibition for Alzheimer’s Disease. J Cent Nerv Syst Dis 9:1179573517705670CrossRefGoogle Scholar
  2. 2.
    Decourt B, Lahiri DK, Sabbagh MN (2017) Targeting tumor necrosis factor alpha for Alzheimer’s disease. Curr Alzheimer Res 14(4):412Google Scholar
  3. 3.
    Shamim D, Laskowski M (2017) Inhibition of inflammation mediated through the tumor necrosis factor α biochemical pathway can lead to favorable outcomes in Alzheimer disease. J Cent Nerv Syst Dis 9:1179573517722512CrossRefGoogle Scholar
  4. 4.
    Yates AM, Elvin SJ, Williamson DE (1999) The optimisation of a murine TNF-α ELISA and the application of the method to other murine cytokines. J Immunoass 20(1–2):31CrossRefGoogle Scholar
  5. 5.
    Zeman K, Kantorski J, Paleolog EM, Feldmann M, Tchórzewski H (1996) The role of receptors for tumour necrosis factor-α in the induction of human polymorphonuclear neutrophil chemiluminescence. Immunol Lett 53(1):45CrossRefGoogle Scholar
  6. 6.
    Saito K, Kobayashi D, Sasaki M, Araake H, Kida T, Yagihashi A, Yajima T, Kameshima H, Watanabe N (1999) Detection of human serum tumor necrosis factor-α in healthy donors, using a highly sensitive immuno-PCR assay. Clin Chem 45(5):665Google Scholar
  7. 7.
    Li T, Si Z, Hu L, Qi H, Yang M (2012) Prussian Blue-functionalized ceria nanoparticles as label for ultrasensitive detection of tumor necrosis factor-α. Sensors Actuators B Chem 171:1060CrossRefGoogle Scholar
  8. 8.
    Liu Y, Zhou Q, Revzin A (2013) An aptasensor for electrochemical detection of tumor necrosis factor in human blood. Analyst 138(15):4321CrossRefGoogle Scholar
  9. 9.
    Yin Z, Liu Y, Jiang L-P, Zhu J-J (2011) Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres. Biosens Bioelectron 26(5):1890CrossRefGoogle Scholar
  10. 10.
    Yuan L, Hua X, Wu Y, Pan X, Liu S (2011) Polymer-functionalized silica nanosphere labels for ultrasensitive detection of tumor necrosis factor-alpha. Anal Chem 83(17):6800CrossRefGoogle Scholar
  11. 11.
    Yuan L, Wei W, Liu S (2012) Label-free electrochemical immunosensors based on surface-initiated atom radical polymerization. Biosens Bioelectron 38(1):79CrossRefGoogle Scholar
  12. 12.
    Hasanzadeh M, Shadjou N, de la Guardia M (2017) Aptamer-based assay of biomolecules: Recent advances in electro-analytical approach. Trends Anal Chem 89:119–132CrossRefGoogle Scholar
  13. 13.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505CrossRefGoogle Scholar
  14. 14.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564CrossRefGoogle Scholar
  15. 15.
    Hosseini M, Khabbaz H, Dadmehr M, Ganjali MR, Mohamadnejad J (2015) Aptamer-based Colorimetric and Chemiluminescence detection of Aflatoxin B1 in foods samples. Acta Chim Slov 62(3):721CrossRefGoogle Scholar
  16. 16.
    Yang C, Wang Y, Marty J-L, Yang X (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26(5):2724CrossRefGoogle Scholar
  17. 17.
    Kumar SS, Joseph J, Phani KL (2007) Novel method for deposition of Gold− Prussian blue nanocomposite films induced by electrochemically formed gold nanoparticles: characterization and application to electrocatalysis. Chem Mater 19(19):4722CrossRefGoogle Scholar
  18. 18.
    Li J, Qiu JD, Xu JJ, Chen HY, Xia XH (2007) The Synergistic Effect of Prussian-Blue-Grafted Carbon Nanotube/Poly (4-vinylpyridine) Composites for Amperometric Sensing. Adv Funct Mater 17(9):1574CrossRefGoogle Scholar
  19. 19.
    Sargazi G, Afzali D, Mostafavi A, Ebrahimipour SY (2017) Ultrasound-assisted facile synthesis of a new tantalum (V) metal-organic framework nanostructure: Design, characterization, systematic study, and CO 2 adsorption performance. J Solid State Chem 250:32CrossRefGoogle Scholar
  20. 20.
    Pingarrón JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53(19):5848CrossRefGoogle Scholar
  21. 21.
    Sargazi G, Afzali D, Daldosso N, Kazemian H, Chauhan N, Sadeghian Z, Tajerian T, Ghafarinazari A, Mozafari M (2015) A systematic study on the use of ultrasound energy for the synthesis of nickel–metal organic framework compounds. Ultrason Sonochem 27:395CrossRefGoogle Scholar
  22. 22.
    Sargazi G, Afzali D, Mostafavi A (2018) A novel synthesis of a new thorium (IV) metal organic framework nanostructure with well controllable procedure through ultrasound assisted reverse micelle method. Ultrason Sonochem 41:234CrossRefGoogle Scholar
  23. 23.
    Ronkainen-Matsuno NJ, Thomas JH, Halsall HB, Heineman WR (2002) Electrochemical immunoassay moving into the fast lane. Trends Anal Chem 21(4):213CrossRefGoogle Scholar
  24. 24.
    Neves MM, González-García MB, Nouws HP, Costa-García A (2012) Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosens Bioelectron 31(1):95CrossRefGoogle Scholar
  25. 25.
    Yan M, Zang D, Ge S, Ge L, Yu J (2012) A disposable electrochemical immunosensor based on carbon screen-printed electrodes for the detection of prostate specific antigen. Biosens Bioelectron 38(1):355CrossRefGoogle Scholar
  26. 26.
    Liu M, Li P, Cheng Y, Xian Y, Zhang C, Jin L (2004) Determination of thiol compounds in rat striatum microdialysate by HPLC with a nanosized CoHCF-modified electrode. Anal Bioanal Chem 380(5–6):742CrossRefGoogle Scholar
  27. 27.
    Xu D, Xu D, Yu X, Liu Z, He W, Ma Z (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77(16):5107CrossRefGoogle Scholar
  28. 28.
    Mazloum-Ardakani M, Hosseinzadeh L, Taleat Z (2014) Two kinds of electrochemical immunoassays for the tumor necrosis factor α in human serum using screen-printed graphite electrodes modified with poly (anthranilic acid). Microchim Acta 181(9–10):917CrossRefGoogle Scholar
  29. 29.
    Miao P, Yang D, Chen X, Guo Z, Tang Y (2017) Voltammetric determination of tumor necrosis factor-α based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles. Microchim Acta 184(10):3901CrossRefGoogle Scholar
  30. 30.
    Man Y, Lv X, Iqbal J, Peng G, Song D, Zhang C, Deng Y (2015) Microchip based and immunochromatographic strip assays for the visual detection of interleukin-6 and of tumor necrosis factor α using gold nanoparticles as labels. Microchim Acta 182(3–4):597CrossRefGoogle Scholar
  31. 31.
    Weng S, Chen M, Zhao C, Liu A, Lin L, Liu Q, Lin J, Lin X (2013) Label-free electrochemical immunosensor based on K 3 [Fe (CN) 6] as signal for facile and sensitive determination of tumor necrosis factor-alpha. Sensors Actuators B Chem 184:1CrossRefGoogle Scholar
  32. 32.
    Zhang L, Li C, Zhao D, Wu T, Nie G (2014) An electrochemical immunosensor for the tumor marker α-fetoprotein using a glassy carbon electrode modified with a poly (5-formylindole), single-wall carbon nanotubes, and coated with gold nanoparticles and antibody. Microchim Acta 181(13–14):1601CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Maryam Hosseini Ghalehno
    • 1
    • 2
  • Mohammad Mirzaei
    • 1
  • Masoud Torkzadeh-Mahani
    • 3
  1. 1.Department of ChemistryUniversity of Shahid Bahonar KermanKermanIran
  2. 2.Young Research SocietyShahid Bahonar University of KermanKermanIran
  3. 3.Department of Biotechnology, Institute of Science, High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran

Personalised recommendations