Advertisement

Microchimica Acta

, 185:155 | Cite as

Switched voltammetric determination of ractopamine by using a temperature-responsive sensing film

  • Chao Chen
  • Mingxuan Zhang
  • Chunyan Li
  • Yixi XieEmail author
  • Junjie FeiEmail author
Original Paper

Abstract

This study describes an electrochemical sensor for the animal growth promoter ractopamine. The method is based on the use of a glassy carbon electrode (GCE) modified with a temperature-responsive sensing film composed of reduced graphene oxide, C60 fullerene, and the temperature-sensitive polymer poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA). The modified GCE was characterized by scanning electron microscopy and electrochemical impedance spectroscopy. A large oxidation peak current can be observed (maximum typically at 0.57 V vs. Ag/AgCl) when the temperature is raised to above the lower critical solution temperature of PMEO2MA. This peak disappears at lower temperature. Under optimum conditions, the sensor has a detection range for ractopamine from 0.1 to 3.1 μM, with an 82 nM detection limit. The method was successfully applied to the determination of ractopamine in spiked pork samples.

Graphical abstract

Schematic presentation of the reversible, temperature-controlled “on/off” electrochemical behavior of ractopamine at a glassy carbon electrode modified with a film composed of reduced graphene oxide (rGO), C60 fullerene and the poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA).

Keywords

Temperature-responsive polymer Fullerene Reduced graphene oxide Electrochemical “on/off” detection Electrochemical sensor 

Notes

Acknowledgements

This research was financially supported by the NSF of China (Grants No. 21475114, 21775133 and 31701613), Program for Changjiang Scholars and Innovative Research Team in University (1337304),

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2680_MOESM1_ESM.docx (932 kb)
ESM 1 (DOCX 932 kb)

References

  1. 1.
    Stuart MA, Huck WT, Genzer J, Müller M, Ober C, Stamm M et al (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113.  https://doi.org/10.1038/nmat2614 CrossRefGoogle Scholar
  2. 2.
    Urban MW (2009) Stratification, stimuli-responsiveness, self-healing, and signaling in polymer networks. Prog Polym Sci 34(8):679–687.  https://doi.org/10.1016/j.progpolymsci.2009.03.004 CrossRefGoogle Scholar
  3. 3.
    Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalized electrodes: recent trends. J Mater Chem B 1(38):4878–4908.  https://doi.org/10.1039/C3TB20881H CrossRefGoogle Scholar
  4. 4.
    Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29(12):1173–1222.  https://doi.org/10.1016/j.progpolymsci.2004.08.003 CrossRefGoogle Scholar
  5. 5.
    Dimitrov I, Trzebicka B, Müller AHE, Dworak A, Tsvetanov CB (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32(11):1275–1343.  https://doi.org/10.1016/j.progpolymsci.2007.07.001 CrossRefGoogle Scholar
  6. 6.
    Schild HG (1992) Poly (N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17(2):163–249.  https://doi.org/10.1016/0079-6700(92)90023-R CrossRefGoogle Scholar
  7. 7.
    Nath N, Chilkoti A (2002) Creating “smart” surfaces using stimuli responsive polymers. Adv Mater 14(17):1243–1247.  https://doi.org/10.1002/1521-4095(20020903)14:17<1243::AID-ADMA1243>3.0.CO;2-M CrossRefGoogle Scholar
  8. 8.
    Hoffman AS, Stayton PS (2007) Conjugates of stimuli-responsive polymers and proteins. Prog Polym Sci 32(8):922–932.  https://doi.org/10.1016/j.progpolymsci.2007.05.005 CrossRefGoogle Scholar
  9. 9.
    Shamim N, Hong L, Hidajat K, Uddin MS (2007) Thermosensitive polymer coated nanomagnetic particles for separation of bio-molecules. Sep Purif Technol 53(2):164–170.  https://doi.org/10.1016/j.seppur.2006.06.021 CrossRefGoogle Scholar
  10. 10.
    Lokuge I, Wang X, Bohn PW (2007) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(n-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. Langmuir Acs J Surf Colloids 23(1):305–311.  https://doi.org/10.1021/la060813m CrossRefGoogle Scholar
  11. 11.
    Kanazawa H (2007) Thermally responsive chromatographic materials using functional polymers. J Sep Sci 30(11):1646–1656.  https://doi.org/10.1002/jssc.200700093 CrossRefGoogle Scholar
  12. 12.
    Dai S, Ravi P, Tam KC (2008) pH-responsive polymers: synthesis, properties and applications. Soft Matter 4(3):435–449.  https://doi.org/10.1039/B714741D CrossRefGoogle Scholar
  13. 13.
    Hatakeyama H, Kikuchi A, Yamato M, Okano T (2007) Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials 28(25):3632–3643.  https://doi.org/10.1016/j.biomaterials.2007.04.019 CrossRefGoogle Scholar
  14. 14.
    Suzuki H (2015) Advances in the microfabrication of electrochemical sensors and systems. Electroanalysis 12(9):703–715.  https://doi.org/10.1002/1521-4109(200005)12:9<703::AID-ELAN703>3.0.CO;2-7 CrossRefGoogle Scholar
  15. 15.
    Song S, Hu N (2010) pH-controllable bioelectrocatalysis based on "on-off" switching redox property of electroactive probes for spin-assembled layer-by-layer films containing branched poly(ethyleneimine). J Phys Chem B 114(10):3648–3654.  https://doi.org/10.1021/jp910048e CrossRefGoogle Scholar
  16. 16.
    Zhou Y, Chao C, Jia Z, Fei J, Ding Y, Cai Y (2016) Reversible switched detection of dihydroxybenzenes using a temperature-sensitive electrochemical sensing film. Electrochim Acta 192:158–166.  https://doi.org/10.1016/j.electacta.2016.01.183 CrossRefGoogle Scholar
  17. 17.
    Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42(17):7468–7483.  https://doi.org/10.1039/C2CS35191A CrossRefGoogle Scholar
  18. 18.
    Roy D, Brooks WL, Sumerlin BS (2013) New directions in thermoresponsive polymers. Chem Soc Rev 42(17):7214–7243CrossRefGoogle Scholar
  19. 19.
    Hamidi H, Bozorgzadeh S, Haghighi B (2017) Amperometric hydrazine sensor using a glassy carbon electrode modified with gold nanoparticle-decorated multiwalled carbon nanotubes. Microchim Acta 184:4537.  https://doi.org/10.1007/s00604-017-2480-0 CrossRefGoogle Scholar
  20. 20.
    Liu Y, Yu D, Zeng C, Miao Z, Dai L (2010) Biocompatible graphene oxide-based glucose biosensors. Langmuir 26(9):6158–6160.  https://doi.org/10.1021/la100886x CrossRefGoogle Scholar
  21. 21.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132.  https://doi.org/10.1021/cr900070d CrossRefGoogle Scholar
  22. 22.
    Shi Y, Zhou W, Lu AY, Fang W, Lee YH, Hsu AL et al (2012) Van der waals epitaxy of mos2 layers using graphene as growth templates. Nano Lett 12(6):2784.  https://doi.org/10.1021/nl204562j CrossRefGoogle Scholar
  23. 23.
    Chua CK, Sofer Z, Šimek P, Jankovský O, Klímová K, Bakardjieva S et al (2015) Synthesis of strongly fluorescent graphene quantum dots by cage-opening buckminsterfullerene. ACS Nano 9(3):2548–2555.  https://doi.org/10.1021/nn505639q CrossRefGoogle Scholar
  24. 24.
    Yang L, Xiong H, Zhang X, Wang S, Zhang X (2011) Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon-coated nickel modified electrode. Biosens Bioelectron 26(9):3801.  https://doi.org/10.1016/j.bios.2011.02.037 CrossRefGoogle Scholar
  25. 25.
    Hu Z, Li J, Huang Y, Chen L, Li Z (2014) Functionalized graphene/C60 nanohybrid for targeting photothermally enhanced photodynamic therapy. RSC Adv 5:654–664.  https://doi.org/10.1039/C4RA13427C CrossRefGoogle Scholar
  26. 26.
    Yang F, Wang P, Wang R, Zhou Y, Su X, He Y et al (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352.  https://doi.org/10.1016/j.bios.2015.09.050 CrossRefGoogle Scholar
  27. 27.
    Zhou Y, Wang P, Su X, Zhao H, He Y (2014) Sensitive immunoassay for the β-agonist ractopamine based on glassy carbon electrode modified with gold nanoparticles and multi-walled carbon nanotubes in a film of poly-arginine. Microchim Acta 181(15–16):1973–1979.  https://doi.org/10.1007/s00604-014-1298-2 CrossRefGoogle Scholar
  28. 28.
    He L, Guo C, Song Y, Zhang S, Wang M, Peng D, Liu CS (2017) Chitosan stabilized gold nanoparticle based electrochemical ractopamine immunoassay. Microchim Acta 184:2919.  https://doi.org/10.1007/s00604-017-2315-z CrossRefGoogle Scholar
  29. 29.
    Chen S, Zhang J, Gan N, Hu F, Li T, Cao Y, Pan D (2015) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182(3–4):815–822.  https://doi.org/10.1007/s00604-014-1392-5 CrossRefGoogle Scholar
  30. 30.
    Hummers WS, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  31. 31.
    Liu C, Tan Y, Xu K, Li Y, Lu C, Wang P (2014) Synthesis of poly (2-(2-methoxyethoxy) ethyl methacrylate) hydrogel using starch-based nanosphere cross-linkers. Carbohydr Polym 105:270–275.  https://doi.org/10.1016/j.carbpol.2014.01.078 CrossRefGoogle Scholar
  32. 32.
    Lu X, Zheng H, Li XQ, Yuan XX, Li H, Deng LG et al (2012) Detection of ractopamine residues in pork by surface plasmon resonance-based biosensor inhibition immunoassay. Food Chem 130(4):1061–1065.  https://doi.org/10.1016/j.foodchem.2011.07.133 CrossRefGoogle Scholar
  33. 33.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28CrossRefGoogle Scholar
  34. 34.
    Liu Z, Zhou Y, Wang Y, Cheng Q, Wu K (2012) Enhanced oxidation and detection of toxic ractopamine using carbon nanotube film-modified electrode. Electrochim Acta 74(1):139–144.  https://doi.org/10.1016/j.electacta.2012.04.041 CrossRefGoogle Scholar
  35. 35.
    Ni Y, Wang Y, Kokot S (2010) Voltammetric, UV–vis spectrometric and fluorescence study of the interaction of ractopamine and DNA with the aid of multivariate curve resolution-alternating least squares. Electroanalysis 22(19):2216–2224.  https://doi.org/10.1002/elan.200900596 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of ChemistryXiangtan UniversityXiangtanPeople’s Republic of China

Personalised recommendations