Advertisement

Microchimica Acta

, 185:127 | Cite as

Carbon nanotube-modified monolithic polymethacrylate pipette tips for (micro)solid-phase extraction of antidepressants from urine samples

  • Beatriz Fresco-Cala
  • Óscar Mompó-Roselló
  • Ernesto F. Simó-Alfonso
  • Soledad CárdenasEmail author
  • José Manuel Herrero-MartínezEmail author
Original Paper

Abstract

This work evaluates the potential of methacrylate monoliths with multi-walled carbon nanotubes incorporated into the polymeric network for the extraction of antidepressants from human urine. The method is based on a micropipette solid-phase extraction tip containing a hybrid monolithic material covalently attached to the polypropylene housing. A polymer layer made from poly(ethylene dimethacrylate) was bound to the inner surface of a polypropylene tip via UV grafting. The preparation of the monolith and the microextraction steps were optimized in terms of adsorption capacity. Limits of detection ranged from 9 to 15 μg·L−1. The average precision of the method varied between 3 and 5% (intra-tips), and from 4 to 14% (inter-tips). The accuracy of the method was evaluated through a recovery study by using spiked samples.

Graphical abstract

Hybrid polymer monoliths containing multi-walled carbon nanotubes (MWCNTs) were prepared in pipette tips by photo-polymerization approach. The extraction devices were used for the extraction of antidepressants in urine samples.

Keywords

Carbon nanoparticles Hybrid monolith Microextraction Porous polymer Photografting process UV attachment Drugs Liquid chromatography Biological samples 

Notes

Acknowledgments

Financial support from the Spanish Ministry of Science and Innovation (CTQ2014-52939-R and CTQ2014-52765-R) and PROMETEO/2016/145 (Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana, Spain) is gratefully acknowledged. B. Fresco-Cala expresses her gratitude for the predoctoral grant (ref FPU13/03896) from the Spanish Ministry of Education.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2659_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1208 kb)

References

  1. 1.
    Bridge JA, Iyengar S, Salary CB, Barbe RP, Birmaher B, Pincus HA, Ren L, Brent DA (2007) Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric antidepressant treatment: a meta-analysis of randomized controlled trials. JAMA 297(15):1683–1696CrossRefGoogle Scholar
  2. 2.
    Ruiz-Angel M, Carda-Broch S, Simó-Alfonso E, Garcí M (2003) Optimised procedures for the reversed-phase liquid chromatographic analysis of formulations containing tricyclic antidepressants. J Pharm Biomed Anal 32(1):71–84CrossRefGoogle Scholar
  3. 3.
    Reuben BG, Wittcoff HA (1990) Pharmaceutical Chemicals in Perspective. Int Clin Psychopharmacol 5(4):299CrossRefGoogle Scholar
  4. 4.
    Alves C, Fernandes C, José dos Santos Neto A, Rodrigues JC, Costa Queiroz ME, Lanças FM (2006) Optimization of the SPME parameters and its online coupling with HPLC for the analysis of tricyclic antidepressants in plasma samples. J Chromatogr Sci 44(6):340–346CrossRefGoogle Scholar
  5. 5.
    Tanaka E, Terada M, Nakamura T, Misawa S, Wakasugi C (1997) Forensic analysis of eleven cyclic antidepressants in human biological samples using a new reversed-phase chromatographic column of 2 μm porous microspherical silica gel. J Chromatogr B Biomed Appl 692(2):405–412CrossRefGoogle Scholar
  6. 6.
    Uddin MN, Samanidou VF, Papadoyannis IN (2008) Development and validation of an HPLC method for the determination of benzodiazepines and tricyclic antidepressants in biological fluids after sequential SPE. J Sep Sci 31(13):2358–2370CrossRefGoogle Scholar
  7. 7.
    Saito Y, Kawazoe M, Hayashida M, Jinno K (2000) Direct coupling of microcolumn liquid chromatography with in-tube solid-phase microextraction for the analysis of antidepressant drugs. Analyst 125(5):807–809CrossRefGoogle Scholar
  8. 8.
    Ghambarian M, Yamini Y, Esrafili A (2012) Three-phase hollow fiber microextraction based on two immiscible organic solvents for determination of tricyclic antidepressant drugs: comparison with conventional three-phase hollow fiber microextraction. J Chromatogr A 1222:5–12CrossRefGoogle Scholar
  9. 9.
    Ito R, Ushiro M, Takahashi Y, Saito K, Ookubo T, Iwasaki Y, Nakazawa H (2011) Improvement and validation the method using dispersive liquid–liquid microextraction with in situ derivatization followed by gas chromatography–mass spectrometry for determination of tricyclic antidepressants in human urine samples. J Chromatogr B 879(31):3714–3720CrossRefGoogle Scholar
  10. 10.
    Jiménez-Soto JM, Cárdenas S, Valcárcel M (2009) Evaluation of carbon nanocones/disks as sorbent material for solid-phase extraction. J Chromatogr A 1216(30):5626–5633CrossRefGoogle Scholar
  11. 11.
    Jiménez-Soto JM, Lucena R, Cárdenas S, Valcárcel M (2010) Solid phase (micro)extraction tools based on carbon nanotubes and related nanostructures. In: Marulanda JM (ed) Carbon Nanotubes. InTech.  https://doi.org/10.5772/39437
  12. 12.
    Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83(11):1407–1413CrossRefGoogle Scholar
  13. 13.
    Chen W, Duan L, Zhu D (2007) Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ Sci Technol 41(24):8295–8300CrossRefGoogle Scholar
  14. 14.
    Valcarcel M, Simonet BM, Cardenas S, Suárez B (2005) Present and future applications of carbon nanotubes to analytical science. Anal Bioanal Chem 382(8):1783–1790CrossRefGoogle Scholar
  15. 15.
    Roldán-Pijuán M, Lucena R, Cárdenas S, Valcárcel M (2014) Micro-solid phase extraction based on oxidized single-walled carbon nanohorns immobilized on a stir borosilicate disk: application to the preconcentration of the endocrine disruptor benzophenone-3. Microchem J 115:87–94CrossRefGoogle Scholar
  16. 16.
    Es’haghi Z, Ebrahimi M, Hosseini M-S (2011) Optimization of a novel method for determination of benzene, toluene, ethylbenzene, and xylenes in hair and waste water samples by carbon nanotubes reinforced sol–gel based hollow fiber solid phase microextraction and gas chromatography using factorial experimental design. J Chromatogr A 1218(21):3400–3406CrossRefGoogle Scholar
  17. 17.
    Fresco-Cala B, Cárdenas S, Valcárcel M (2016) Improved microextraction of selected triazines using polymer monoliths modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 183(1):465–474CrossRefGoogle Scholar
  18. 18.
    Wang X, Li X, Li Z, Zhang Y, Bai Y, Liu H (2014) Online coupling of in-tube solid-phase microextraction with direct analysis in real time mass spectrometry for rapid determination of triazine herbicides in water using carbon-nanotubes-incorporated polymer monolith. Anal Chem 86(10):4739–4747CrossRefGoogle Scholar
  19. 19.
    Fresco-Cala B, Cárdenas S, Valcárcel M (2016) Preparation and evaluation of micro and meso porous silica monoliths with embedded carbon nanoparticles for the extraction of non-polar compounds from waters. J Chromatogr A 1468:55–63CrossRefGoogle Scholar
  20. 20.
    Lucena R, Cárdenas S, Ramis-ramos G, Valcárcel M, Herrero-martínez JM (2014) UV-polymerized butyl methacrylate monoliths with embedded carboxylic single-walled carbon nanotubes for CEC applications. Anal Bioanal Chem 406(25):6329CrossRefGoogle Scholar
  21. 21.
    Fresco-Cala B, Cárdenas S, Herrero-Martínez JM (2017) Preparation of porous methacrylate monoliths with oxidized single-walled carbon nanohorns for the extraction of nonsteroidal anti-inflammatory drugs from urine samples. Microchim Acta 184(6):1863–1871CrossRefGoogle Scholar
  22. 22.
    Alwael H, Connolly D, Clarke P, Thompson R, Twamley B, O'Connor B, Paull B (2011) Pipette-tip selective extraction of glycoproteins with lectin modified gold nano-particles on a polymer monolithic phase. Analyst 136(12):2619–2628CrossRefGoogle Scholar
  23. 23.
    Stachowiak TB, Rohr T, Hilder EF, Peterson DS, Yi M, Svec F, Frechet JM (2003) Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis 24(21):3689–3693CrossRefGoogle Scholar
  24. 24.
    Krenkova J, Foret F (2013) Nanoparticle-modified monolithic pipette tips for phosphopeptide enrichment. Anal Bioanal Chem 405(7):1–9CrossRefGoogle Scholar
  25. 25.
    Ma H, Davis RH, Bowman CN (2000) A novel sequential photoinduced living graft polymerization. Macromolecules 33(2):331–335CrossRefGoogle Scholar
  26. 26.
    Rajabi AA, Yamini Y, Faraji M, Seidi S (2013) Solid-phase microextraction based on cetyltrimethylammonium bromide-coated magnetic nanoparticles for determination of antidepressants from biological fluids. Med Chem Res 22(4):1570–1577CrossRefGoogle Scholar
  27. 27.
    Banitaba MH, Davarani SSH, Ahmar H, Movahed SK (2014) Application of a new fiber coating based on electrochemically reduced graphene oxide for the cold-fiber headspace solid-phase microextraction of tricyclic antidepressants. J Sep Sci 37(9–10):1162–1169CrossRefGoogle Scholar
  28. 28.
    Jafari M, Sedghi R, Ebrahimzadeh H (2016) A platinum wire coated with a composite consisting of poly pyrrole and poly (ɛ-caprolactone) for solid phase microextraction of the antidepressant imipramine prior to its determination via ion mobility spectrometry. Microchim Acta 183(2):805–812CrossRefGoogle Scholar
  29. 29.
    Alidoust M, Seidi S, Rouhollahi A, Shanehsaz M (2017) In-tube electrochemically controlled solid phase microextraction of amitriptyline, imipramine and chlorpromazine from human plasma by using an indole-thiophene copolymer nanocomposite. Microchim Acta 184(7):2473–2481CrossRefGoogle Scholar
  30. 30.
    Bagheri H, Banihashemi S, Zandian FK (2016) Microextraction of antidepressant drugs into syringes packed with a nanocomposite consisting of polydopamine, silver nanoparticles and polypyrrole. Microchim Acta 183(1):195–202CrossRefGoogle Scholar
  31. 31.
    Ata Ş, Berber M, Çabuk H, Akyüz M (2015) Optimization of magnetic extraction by experimental design methodology for the determination of antidepressants in biological samples. Anal Methods 7(15):6231–6242CrossRefGoogle Scholar
  32. 32.
    Kamaruzaman S, Sanagi MM, Yahaya N, Wan Ibrahim WA, Endud S, Ibrahim W, Nazihah W (2017) Magnetic micro-solid-phase extraction based on magnetite-MCM-41 with gas chromatography–mass spectrometry for the determination of antidepressant drugs in biological fluids. J Sep Sci 40(21):4222–4233CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Beatriz Fresco-Cala
    • 1
    • 2
  • Óscar Mompó-Roselló
    • 2
  • Ernesto F. Simó-Alfonso
    • 2
  • Soledad Cárdenas
    • 1
    Email author
  • José Manuel Herrero-Martínez
    • 2
    Email author
  1. 1.Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNANUniversidad de CórdobaCórdobaSpain
  2. 2.Department of Analytical ChemistryUniversity of ValenciaBurjassotSpain

Personalised recommendations