Microchimica Acta

, 185:44 | Cite as

Detection of glutathione based on MnO2 nanosheet-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter

  • Qingqing Tan
  • Ruirui Zhang
  • Rongmei Kong
  • Weisu Kong
  • Wenzhi Zhao
  • Fengli Qu
Original Paper


The authors describe a novel method for the determination of glutathione (GSH). Detection is based on target induced release of glucose from MnO2 nanosheet-gated aminated mesoporous silica nanoparticles (MSNs). In detail, glucose is loaded into the pores of MSNs. Negatively charged MnO2 nanosheets are assembled on the MSNs through electrostatic interactions. The nanosheets are reduced by GSH, and this results in the release of glucose which is quantified by using a commercial electrochemical glucose meter. GSH can be quantified by this method in the 100 nM to 10 μM concentration range, with a 34 nM limit of detection.

Graphical abstract

Glucose is loaded into the pores of mesoporous silica nanoparticles (MSNs). MnO2 nanosheets are assembled on MSNs through electrostatic interactions. Glutathione (GSH) can reduce the nanosheets, and this results in the release of glucose which is quantified by using a commercial glucose meter.


MnO2 nanosheets Mesoporous silica Personal glucose meter Glutathione Portable detection Target induced release 



The authors are grateful for the support of the National Natural Science Foundation of China (21775089, 21375076, 21705151), the Project of Shandong Province Science and Technology Program (2015GSF121031), Outstanding Youth Foundation of Shandong Province (ZR2017JL010), and the Project of Beijing National Science Foundation (2174085).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2603_MOESM1_ESM.docx (73 kb)
ESM 1 (DOCX 72.6 kb)


  1. 1.
    SC L (1999) Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 13:1169–1183Google Scholar
  2. 2.
    Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59CrossRefGoogle Scholar
  3. 3.
    Estrela JM, Ortega A, Obrador E (2006) Glutathione in cancer biology and therapy. Crit Rev Clin Lab Sci 43:143–181CrossRefGoogle Scholar
  4. 4.
    Herzenberg LA, De Rosa SC, Dubs JG, Roederer M, Anderson MT, Ela SW, Deresinski SC, Herzenberg LA (1997) Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci 94:1967–1972CrossRefGoogle Scholar
  5. 5.
    Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155CrossRefGoogle Scholar
  6. 6.
    Reed D, Babson J, Beatty P, Brodie A, Ellis W, Potter D (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem 106:55–62CrossRefGoogle Scholar
  7. 7.
    Çubukçu M, Ertaş FN, Anık Ü (2013) Centri-voltammetric determination of glutathione. Microchim Acta 180:93–100CrossRefGoogle Scholar
  8. 8.
    Dong Y, Su M, Chen P, Sun H (2015) Chemiluminescence of carbon dots induced by diperiodato-nicklate (IV) in alkaline solution and its application to a quenchometric flow-injection assays of paracetamol, L-cysteine and glutathione. Microchim Acta 182:1071–1077CrossRefGoogle Scholar
  9. 9.
    Saha A, Jana NR (2013) Detection of cellular glutathione and oxidized glutathione using magnetic-plasmonic nanocomposite-based “turn-off” surface enhanced Raman scattering. Anal Chem 85:9221–9228CrossRefGoogle Scholar
  10. 10.
    Zhu X, Kalyanaraman N, Subramanian R (2011) Enhanced screening of glutathione-trapped reactive metabolites by in-source collision-induced dissociation and extraction of product ion using UHPLC-high resolution mass spectrometry. Anal Chem 83:9516–9523CrossRefGoogle Scholar
  11. 11.
    Ji D, Meng H, Ge J, Zhang L, Wang H, Bai D, Li J, Qu L, Li Z (2017) Ultrasensitive fluorometric glutathione assay based on a conformational switch of a G-quadruplex mediated by silver (I). Microchim Acta 184:3325–3332CrossRefGoogle Scholar
  12. 12.
    Tang B, Xing Y, Li P, Zhang N, Yu F, Yang G (2007) A rhodamine-based fluorescent probe containing a Se-N bond for detecting thiols and its application in living cells. J Am Chem Soc 129:11666–11667CrossRefGoogle Scholar
  13. 13.
    Wu D, Li G, Chen X, Qiu N, Shi X, Chen G, Sun Z, You J, Wu Y (2017) Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Microchim Acta 184:1923–1931CrossRefGoogle Scholar
  14. 14.
    Li N, Diao W, Han Y, Pan W, Zhang T, Tang B (2014) MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chem Eur J 20:16488–16491CrossRefGoogle Scholar
  15. 15.
    Yang R, Guo X, Jia L, Zhang Y (2017) A fluorescent “on-off-on” assay for selective recognition of Cu (II) and glutathione based on modified carbon nanodots, and its application to cellular imaging. Microchim Acta 184:1143–1150CrossRefGoogle Scholar
  16. 16.
    Hou L, Zhu C, Wu X, Chen G, Tang D (2014) Bioresponsive controlled release from mesoporous silica nanocontainers with glucometer readout. Chem Commun 50:1441–1443CrossRefGoogle Scholar
  17. 17.
    Zhang R, Li L, Feng J, Tong L, Wang Q, Tang B (2014) Versatile triggered release of multiple molecules from cyclodextrin-modified gold-gated mesoporous silica nanocontainers. ACS Appl Mater Interfaces 6:9932–9936CrossRefGoogle Scholar
  18. 18.
    Yang M, Li H, Javadi A, Gong S (2010) Multifunctional mesoporous silica nanoparticles as labels for the preparation of ultrasensitive electrochemical immunosensors. Biomaterials 31:3281–3286CrossRefGoogle Scholar
  19. 19.
    Pan W, Wang H, Yang L, Yu Z, Li N, Tang B (2016) Ratiometric fluorescence nanoprobes for subcellular pH imaging with a single-wavelength excitation in living cells. Anal Chem 88:6743–6748CrossRefGoogle Scholar
  20. 20.
    Chen S, Zhang J, Gan N, Hu F, Li T, Cao Y, Pan D (2015) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic β-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182:815–822CrossRefGoogle Scholar
  21. 21.
    Li N, Yu Z, Pan W, Han Y, Zhang T, Tang B (2013) A near-infrared light-triggered nanocarrier with reversible DNA valves for intracellular controlled release. Adv Funct Mater 23:2255–2262CrossRefGoogle Scholar
  22. 22.
    Li Y, Li N, Pan W, Yu Z, Yang L, Tang B (2017) Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery. ACS Appl Mater Interfaces 9:2123–2129CrossRefGoogle Scholar
  23. 23.
    Tang D, Lin Y, Zhou Q, Lin Y, Li P, Niessner R, Knopp D (2014) Low-cost and highly sensitive immunosensing platform for aflatoxins using one-step competitive displacement reaction mode and portable glucometer-based detection. Anal Chem 86:11451–11458CrossRefGoogle Scholar
  24. 24.
    Wang Y, Lu M, Zhu J, Tian S (2014) Wrapping DNA-gated mesoporous silica nanoparticles for quantitative monitoring of telomerase activity with glucometer readout. J Mater Chem B 2:5847–5853CrossRefGoogle Scholar
  25. 25.
    Dong Z-Z, Lu L, Ko C-N, Yang C, Li S, Lee M-Y, Leung C-H, Ma D-L (2017) A MnO2 nanosheet-assisted GSH detection platform using an iridium (iii) complex as a switch-on luminescent probe. Nano 9:4677–4682Google Scholar
  26. 26.
    Zhang X, Kong R, Tan Q, Qu F, Qu F (2017) A label-free fluorescence turn-on assay for glutathione detection by using MnO2 nanosheets assisted aggregation-induced emission-silica nanospheres. Talanta 169:1–7CrossRefGoogle Scholar
  27. 27.
    He D, Yang X, He X, Wang K, Yang X, He X, Zou Z (2015) A sensitive turn-on fluorescent probe for intracellular imaging of glutathione using single-layer MnO2 nanosheet-quenched fluorescent carbon quantum dots. Chem Commun 51:14764–14767CrossRefGoogle Scholar
  28. 28.
    Meng H, Jin Z, Lv Y, Yang C, Zhang X-B, Tan W, R-Q Y (2014) Activatable two-photon fluorescence nanoprobe for bioimaging of glutathione in living cells and tissues. Anal Chem 86:12321–12326CrossRefGoogle Scholar
  29. 29.
    Qu F, Pei H, Kong R, Zhu S, Xia L (2017) Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 165:136–142CrossRefGoogle Scholar
  30. 30.
    Deng R, Xie X, Vendrell M, Chang Y-T, Liu X (2011) Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc 133:20168–20171CrossRefGoogle Scholar
  31. 31.
    Kong X-J, Wu S, Chen T-T, R-Q Y, Chu X (2016) MnO2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood. Nano 8:15604–15610Google Scholar
  32. 32.
    Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, Kawamata J (2008) Room-temperature synthesis of manganese oxide monosheets. J Am Chem Soc 130:15938–15943CrossRefGoogle Scholar
  33. 33.
    Ziemys A, Grattoni A, Fine D, Hussain F, Ferrari M (2010) Confinement effects on monosaccharide transport in nanochannels. J Phys Chem B 114:11117–11126CrossRefGoogle Scholar
  34. 34.
    Kong W, Wu D, Li G, Chen X, Gong P, Sun Z, Chen G, Xia L, You J, Wu Y (2017) A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy. Talanta 165:677–684CrossRefGoogle Scholar
  35. 35.
    Lu S, Wu D, Li G, Lv Z, Chen Z, Chen L, Chen G, Xia L, You J, Wu Y (2016) Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury (II) ions and glutathione. RSC Adv 6:103169–103177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringQufu Normal UniversityQufuPeople’s Republic of China
  2. 2.Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations