Microchimica Acta

, 185:32 | Cite as

Colloidal crystal templated molecular imprinted polymer for the detection of 2-butoxyethanol in water contaminated by hydraulic fracturing

  • Jingjing Dai
  • Danh Vu
  • Susan Nagel
  • Chung-Ho Lin
  • Maria Fidalgo de Cortalezzi
Original Paper


The authors describe a molecularly imprinted polymer (MIP) that enables detection of 2-butoxyethanol (2BE), a pollutant associated with hydraulic fracturing contamination. Detection is based on a combination of a colloidal crystal templating and a molecular imprinting. The MIPs are shown to display higher binding capacity for 2BE compared to non-imprinted films (NIPs), with imprinting efficiencies of ∼ 2. The tests rely on the optical effects that are displayed by the uniformly ordered porous structure of the material. The reflectance spectra of the polymer films have characteristic Bragg peaks whose location varies with the concentration of 2BE. Peaks undergo longwave red shifts up to 50 nm on exposure of the MIP to 2BE in concentrations in the range from 1 ppb to 100 ppm. This allows for quantitative estimates of the 2BE concentrations present in aqueous solutions. The material is intended for use in the early detection of contamination at hydraulic fracturing sites.

Graphical abstract

Molecularly imprinted polymers (MIPs) sensor with the sensing ability on reflectance spectra responding to the presence of 2-butoxyethanol (2BE) for early detection of hydraulic fracking contamination.


Fracking Inverse opal films Colloidal crystal Optical detection UV reflectance 


Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2017_2590_MOESM1_ESM.docx (10 mb)
ESM 1 (DOCX 10286 kb)


  1. 1.
    Program NT (2000) NTP toxicology and carcinogenesis studies 2-Butoxyethanol (CAS NO. 111-76-2) in F344/N rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser 484:1Google Scholar
  2. 2.
    Thacker JB, Carlton DD, Hildenbrand ZL, Kadjo AF, Schug KA (2015) Chemical analysis of wastewater from unconventional drilling operations. Water 7(4):1568–1579.  https://doi.org/10.3390/w7041568 CrossRefGoogle Scholar
  3. 3.
    Waxman HA, Markey, EJ, DeGette D (2011) Chemicals used in hydraulic fracturing. The Committee on Energy and Commerce, US House of Representatives. http://democrats.energycommerce.house.gov/sites/default/files/documents/Hydraulic-Fracturing-Chemicals-2011-4-18.pdf. Accessed 1 Mar 2015
  4. 4.
    DOE U (2011) The SEAB Shale Gas Production Subcommittee Ninety-Day Report-August 11, 2011Google Scholar
  5. 5.
    Orem W, Tatu C, Varonka M, Lerch H, Bates A, Engle M, Crosby L, McIntosh J (2014) Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. Int J Coal Geol 126:20–31.  https://doi.org/10.1016/j.coal.2014.01.003 CrossRefGoogle Scholar
  6. 6.
    Maule AL, Makey CM, Benson EB, Burrows IJ, Scammell MK (2013) Disclosure of hydraulic fracturing fluid chemical additives: analysis of regulations. New Solut 23(1):167–187.  https://doi.org/10.2190/NS.23.1.j CrossRefGoogle Scholar
  7. 7.
    Colborn T, Kwiatkowski C, Schultz K, Bachran M (2011) Natural gas operations from a public health perspective. Hum Ecol Risk Assess 17(5):1039–1056.  https://doi.org/10.1080/10807039.2011.605662 CrossRefGoogle Scholar
  8. 8.
    Fontenot BE, Hunt LR, Hildenbrand ZL, Carlton Jr DD, Oka H, Walton JL, Hopkins D, Osorio A, Bjorndal B, QH H (2013) An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett shale formation. Environ Sci Technol 47(17):10032–10040.  https://doi.org/10.1021/es4011724 CrossRefGoogle Scholar
  9. 9.
    Bamberger M, Oswald RE (2012) Impacts of gas drilling on human and animal health. New Solut 22(1):51–77.  https://doi.org/10.2190/NS.22.1.e CrossRefGoogle Scholar
  10. 10.
    Matthiessen P, Johnson I (2007) Implications of research on endocrine disruption for the environmental risk assessment, regulation and monitoring of chemicals in the European Union. Environ Pollut 146(1):9–18.  https://doi.org/10.1016/j.envpol.2006.05.036 CrossRefGoogle Scholar
  11. 11.
    Auriol M, Filali-Meknassi Y, Tyagi RD, Adams CD, Surampalli RY (2006) Endocrine disrupting compounds removal from wastewater, a new challenge. Process Biochem 41(3):525–539.  https://doi.org/10.1016/j.procbio.2005.09.017 CrossRefGoogle Scholar
  12. 12.
    Wulff G (2013) Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchim Acta 180(15–16):1359–1370.  https://doi.org/10.1007/s00604-013-0992-9 CrossRefGoogle Scholar
  13. 13.
    Caykara T, Bozkaya U, Kantoğlu Ö (2003) Network structure and swelling behavior of poly (acrylamide/crotonic acid) hydrogels in aqueous salt solutions. J Polym Sci B Polym Phys 41(14):1656–1664.  https://doi.org/10.1002/polb.10500 CrossRefGoogle Scholar
  14. 14.
    Niu M, Pham-Huy C, He H (2016) Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183(10):2677–2695.  https://doi.org/10.1007/s00604-016-1930-4 CrossRefGoogle Scholar
  15. 15.
    Zhu L, Chen L, Xu X (2003) Application of a molecularly imprinted polymer for the effective recognition of different anti-epidermal growth factor receptor inhibitors. Anal Chem 75(23):6381–6387.  https://doi.org/10.1021/ac026371a CrossRefGoogle Scholar
  16. 16.
    Wei S, Molinelli A, Mizaikoff B (2006) Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol. Biosens Bioelectron 21(10):1943–1951.  https://doi.org/10.1016/j.bios.2005.09.017 CrossRefGoogle Scholar
  17. 17.
    Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942CrossRefGoogle Scholar
  18. 18.
    Valero-Navarro A, Salinas-Castillo A, Fernandez-Sanchez JF, Segura-Carretero A, Mallavia R, Fernandez-Gutierrez A (2009) The development of a MIP-optosensor for the detection of monoamine naphthalenes in drinking water. Biosens Bioelectron 24(7):2305–2311.  https://doi.org/10.1016/j.bios.2008.11.022 CrossRefGoogle Scholar
  19. 19.
    Yang M, Han A, Duan J, Li Z, Lai Y, Zhan J (2012) Magnetic nanoparticles and quantum dots co-loaded imprinted matrix for pentachlorophenol. J Hazard Mater 237-238:63–70.  https://doi.org/10.1016/j.jhazmat.2012.07.064 CrossRefGoogle Scholar
  20. 20.
    Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53(13):3318–3335.  https://doi.org/10.1002/anie.201307828 CrossRefGoogle Scholar
  21. 21.
    Griffete N, Frederich H, Maitre A, Ravaine S, Chehimi MM, Mangeney C (2012) Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol a and pH sensing. Langmuir 28(1):1005–1012.  https://doi.org/10.1021/la202840y CrossRefGoogle Scholar
  22. 22.
    Chen W, Meng Z, Xue M, Shea KJ (2016) Molecular imprinted photonic crystal for sensing of biomolecules. Mol Imprinting 4(1):1–12.  https://doi.org/10.1515/molim-2016-0001 CrossRefGoogle Scholar
  23. 23.
    Wu Z, Tao CA, Lin C, Shen D, Li G (2008) Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers. Chemistry 14(36):11358–11368.  https://doi.org/10.1002/chem.200801250 CrossRefGoogle Scholar
  24. 24.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69.  https://doi.org/10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  25. 25.
    Jiang P, Bertone J, Hwang K, Colvin V (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11(8):2132–2140.  https://doi.org/10.1021/cm990080+ CrossRefGoogle Scholar
  26. 26.
    Lin CH, Lerch RN, Garrett HE, George MF (2007) Improved GC-MS/MS method for determination of atrazine and its chlorinated metabolites in forage plants—laboratory and field experiments. Commun Soil Sci Plant Anal 38(13–14):1753–1773.  https://doi.org/10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  27. 27.
    Kassotis C, Klemp K, Vu D, Lin C-H, Meng C-X, Besch-Williford L, Zoeller R, Drobnis E, Balise V, Isiguzo C, Williams M, Tillitt D, Nagel S (2015) Endocrine –disrupting activity of hydraulic fracturing chemicals and adverse health outcomes after prenatal exposure in male mice. Endocrinology 156(12):4458–4473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Jingjing Dai
    • 1
  • Danh Vu
    • 2
  • Susan Nagel
    • 3
  • Chung-Ho Lin
    • 2
  • Maria Fidalgo de Cortalezzi
    • 1
  1. 1.Department of Civil and Environmental EngineeringUniversity of MissouriColumbiaUSA
  2. 2.The Center of AgroforestryUniversity of MissouriColumbiaUSA
  3. 3.Department of Obstetrics, Gynecology and Women’s HealthUniversity of MissouriColumbiaUSA

Personalised recommendations