Advertisement

Microchimica Acta

, 185:1 | Cite as

Metastable α-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2

  • Yi Wang
  • Dun ZhangEmail author
  • Jin Wang
Original Paper

Abstract

Single phase metastable α-AgVO3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion were synthesized by direct coprecipitation at room temperature. They are shown to be viable peroxidase mimics that catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine in the presence of H2O2. Kinetic analysis indicated typical Michaelis–Menten catalytic behavior. The findings were used to design a colorimetric assay for H2O2, best measured at 652 nm. The method has a linear response in the 60 to 200 μM H2O2 concentration range, with a 2 μM detection limit. Benefitting from the chemical stability of the microrods, the method is well reproducible. It also is easily performed and highly specific.
Graphic abstract

Single phase metastable α-AgVO3 microrods with high crystallinity, tetragonal rod-like microstructure, uniform particle size distribution, and good dispersion can efficiently catalyze the oxidation reaction of peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to produce a blue color change.

Keywords

Silver vanadate Metastable phase Coprecipitation XRD SEM Enzyme mimic TMB Hydrogen peroxide Kinetic Colorimetric detection 

Notes

Acknowledgements

This work was supported by Natured Science Foundation of China (Grant Nos. 41776090 and 41476068), the National Key Research and Development Program of China (Grant No. 2016YFC1400605), the National Key Basic Research Program of China (Grant No. 2014CB643304), and AoShan Talent Program Supported by Qingdao National Laboratory for Marine Science and Technology.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2562_MOESM1_ESM.doc (348 kb)
ESM 1 (DOC 348 kb)

References

  1. 1.
    Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093.  https://doi.org/10.1039/c3cs35486e CrossRefGoogle Scholar
  2. 2.
    Lin YH, Ren JS, XG Q (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4):1097–1105.  https://doi.org/10.1021/ar400250z CrossRefGoogle Scholar
  3. 3.
    Wang YX, Zhao MT, Ping JF, Chen B, Cao XH, Huang Y, Tan CL, Ma QL, SX W, YF Y, QP L, Chen JZ, Zhao W, Ying YB, Zhang H (2016) Bioinspired Design of Ultrathin 2D bimetallic metal-organic-framework Nanosheets used as biomimetic enzymes. Adv Mater 28:4149–4155.  https://doi.org/10.1002/adma.201600108 CrossRefGoogle Scholar
  4. 4.
    Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583.  https://doi.org/10.1038/nnano.2007.260 CrossRefGoogle Scholar
  5. 5.
    Nasir M, Nawaz MH, Latif U, Yaqub M, Hayat A, Rahim A (2017) An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays. Microchim Acta 184(2):323–342.  https://doi.org/10.1007/s00604-016-2036-8 CrossRefGoogle Scholar
  6. 6.
    Li J, Liu W, Wu X, Gao X (2015) Mechanism of pH-switchable peroxidase and catalase-like activities of gold, silver, platinum and palladium. Biomaterials 48:37–44.  https://doi.org/10.1016/j.biomaterials.2015.01.012 CrossRefGoogle Scholar
  7. 7.
    Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46:8017–8019.  https://doi.org/10.1039/c0cc02698k CrossRefGoogle Scholar
  8. 8.
    Ge C, Fang G, Shen X, Chong Y, Wamer WG, Gao X, Chai Z, Chen C, Yin JJ (2016) Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano 10:10436–10445.  https://doi.org/10.1021/acsnano.6b06297 CrossRefGoogle Scholar
  9. 9.
    Shao K, Zhang C, Ye S, Cai K, Wu L, Wang B, Zou C, Lu Z, Han H (2017) Near-infrared electrochemiluminesence biosensor for high sensitive detection of porcine reproductive and respiratory syndrome virus based on cyclodextrin-grafted porous au/PtAu nanotube. Sensor Actuators B Chem 240:586–594.  https://doi.org/10.1016/j.snb.2016.08.162 CrossRefGoogle Scholar
  10. 10.
    He W, Han X, Jia H, Cai J, Zhou Y, Zheng Z (2017) AuPt alloy nanostructures with tunable composition and enzyme-like activities for colorimetric detection of bisulfide. Sci Rep 7:40103.  https://doi.org/10.1038/srep40103 CrossRefGoogle Scholar
  11. 11.
    Liu Y, Zhu G, Yang J, Yuan A, Shen X (2014) Peroxidase-like catalytic activity of Ag3PO4 nanocrystals prepared by a colloidal route. PLoS One 9:e109158.  https://doi.org/10.1371/journal.pone.0109158 CrossRefGoogle Scholar
  12. 12.
    Jia HM, Yang DF, Han XN, Cai JH, Liu HY, He WW (2016) Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nano 8:5938–5945.  https://doi.org/10.1039/c6nr00860g Google Scholar
  13. 13.
    Periasamy AP, Roy P, WP W, Huang YH, Chang HT (2016) Glucose oxidase and horseradish peroxidase like activities of cuprous oxide/Polypyrrole composites. Electrochim Acta 215:253–260.  https://doi.org/10.1016/j.electacta.2016.08.071 CrossRefGoogle Scholar
  14. 14.
    Liu Q, Yang Y, Lv X, Ding Y, Zhang Y, Jing J, Xu C (2017) One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B Chem 240:726–734.  https://doi.org/10.1016/j.snb.2016.09.049 CrossRefGoogle Scholar
  15. 15.
    Yang YS, Mao Z, Huang WJ, Liu LH, Li JL, Li JL, QZ W (2016) Redox enzyme-mimicking activities of CeO2 nanostructures: intrinsic influence of exposed facets. Sci Rep 6:35344.  https://doi.org/10.1038/srep35344 CrossRefGoogle Scholar
  16. 16.
    Xie JX, Zhang XD, Jiang H, Wang S, Liu H, Huang YM (2014) V2O5 nanowires as a robust and efficient peroxidase mimic at high temperature in aqueous media. RSC Adv 4:26046–26049.  https://doi.org/10.1039/c4ra03118k CrossRefGoogle Scholar
  17. 17.
    Wang Y, Zhang D, Xiang ZB (2016) Synthesis and intrinsic enzyme-like activity of β-MnOOH nanoplates. J Taiwan Inst Chem Eng 59:547–552. doi: https://doi.org/10.1016/j.jtice.2015.08.021
  18. 18.
    Yang ZJ, Cao Y, Li J, MM L, Jiang ZK, XY H (2016) Smart CuS nanoparticles as peroxidase mimetics for the Design of Novel Label-Free Chemiluminescent Immunoassay. ACS Appl Mater Interfaces 8:12031–12038.  https://doi.org/10.1021/acsami.6b02481 CrossRefGoogle Scholar
  19. 19.
    Ding CP, Yan YH, Xiang DS, Zhang CL, Xian YZ (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183:625–631.  https://doi.org/10.1007/s00604-015-1690-6 CrossRefGoogle Scholar
  20. 20.
    Wang Y, Zhang D, Xiang Z (2015) Synthesis of α-MnSe crystal as a robust peroxidase mimic. Mater Res Bull 67:152–157.  https://doi.org/10.1016/j.materresbull.2015.03.018 CrossRefGoogle Scholar
  21. 21.
    Wang Y, Zhu YJ, Binyam A, Liu MS, YN W, Li FT (2016) Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens Bioelectron 86:432–438.  https://doi.org/10.1016/j.bios.2016.06.036 CrossRefGoogle Scholar
  22. 22.
    Wang T, YC F, Chai LY, Chao L, LJ B, Meng Y, Chen C, Ma M, Xie QJ, Yao SZ (2014) Filling carbon nanotubes with Prussian blue nanoparticles of high peroxidase-like catalytic activity for colorimetric chemo and biosensing. Chem Euro J 20:2623–2630.  https://doi.org/10.1002/chem.201304035 CrossRefGoogle Scholar
  23. 23.
    Song YJ, KG Q, Zhao C, Ren JS, XG Q (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22:2206–2210.  https://doi.org/10.1002/adma.200903783 CrossRefGoogle Scholar
  24. 24.
    Zhao W, Wei Z, He H, Xu J, Li J, Yang S, Sun C (2015) Supporting 1-D AgVO3 nanoribbons on single layer 2-D graphitic carbon nitride ultrathin nanosheets and their excellent photocatalytic activities. Appl Catal A Gen 501:74–82.  https://doi.org/10.1016/j.apcata.2015.05.020 CrossRefGoogle Scholar
  25. 25.
    de Oliveira RC, de Foggi CC, Teixeira MM, da Silva MDP, Assis M, Francisco EM, da Silva Pimentel BNA, dos Santos Pereira PF, Vergani CE, Machado AL, Andres J, Gracia L, Longo E (2017) Mechanism of antibacterial activity via morphology change of α-AgVO3: theoretical and experimental insights. ACS Appl Mater Interfaces 9:11472–11481.  https://doi.org/10.1021/acsami.7b00920 CrossRefGoogle Scholar
  26. 26.
    Mai L, Xu L, Gao Q, Han C, Hu B, Pi Y (2010) Single β-AgVO3 nanowire H2S sensor. Nano Lett 10(7):2604–2608.  https://doi.org/10.1021/nl1013184 CrossRefGoogle Scholar
  27. 27.
    McNulty D, Ramasse Q, O’Dwyer C (2016) The structural conversion from α-AgVO3 to β-AgVO3: Ag nanoparticle decorated nanowires with application as cathode materials for Li-ion batteries. Nanoscale 8 (36):16266–16275. doi: https://doi.org/10.1039/c6nr04825k
  28. 28.
    Xiang Z, Wang Y, Ju P, Zhang D (2016) Optical determination of hydrogen peroxide by exploiting the peroxidase-like activity of AgVO3 nanobelts. Microchim Acta 183:457–463.  https://doi.org/10.1007/s00604-015-1670-x CrossRefGoogle Scholar
  29. 29.
    Ju P, Xiang YH, Xiang ZB, Wang M, Zhao Y, Zhang D, JQ Y, Han XX (2016) BiOI hierarchical nanoflowers as novel robust peroxidase mimetics for colorimetric detection of H2O2. RSC Adv 6(21):17483–17493.  https://doi.org/10.1039/c6ra00368k CrossRefGoogle Scholar
  30. 30.
    Chang Q, Tang H (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181(5):527–534.  https://doi.org/10.1007/s00604-013-1145-x CrossRefGoogle Scholar
  31. 31.
    Chen J, Chen Q, Chen J, Qiu H (2016) Magnetic carbon nitride nanocomposites as enhanced peroxidase mimetics for use in colorimetric bioassays, and their application to the determination of H2O2 and glucose. Microchim Acta 183(12):3191–3199.  https://doi.org/10.1007/s00604-016-1972-7 CrossRefGoogle Scholar
  32. 32.
    Wang B, Ju P, Zhang D, Han X, Zheng L, Yin X, Sun C (2016) Colorimetric detection of H2O2 using flower-like Fe2(MoO4)3 microparticles as a peroxidase mimic. Microchim Acta 183(11):3025–3033.  https://doi.org/10.1007/s00604-016-1955-8 CrossRefGoogle Scholar
  33. 33.
    Wang N, Sun J, Chen L, Fan H, Ai S (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182(9):1733–1738.  https://doi.org/10.1007/s00604-015-1506-8 CrossRefGoogle Scholar
  34. 34.
    Mu J, Zhang L, Zhao M, Wang Y (2013) Co3O4 nanoparticles as an efficient catalase mimic: properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J Mol Catal A Chem 378:30–37.  https://doi.org/10.1016/j.molcata.2013.05.016 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.Open Studio for Marine Corrosion and ProtectionQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations