Advertisement

Microchimica Acta

, Volume 184, Issue 12, pp 4713–4721 | Cite as

Fluorometric determination of microRNA via FRET between silver nanoclusters and CdTe quantum dots

  • Yasaman-Sadat Borghei
  • Morteza Hosseini
  • Mohammad Reza Ganjali
Original Paper

Abstract

This paper describes a CdTe quantum dot-based fluorescence resonance energy transfer (FRET) based assay for the detection of the breast cancer biomarker microRNA. The method relies on energy transfer between DNA-templated silver nanoclusters (AgNCs) and CdTe QDs. Interaction between double strand oligonucleotide and QDs can be detected qualitatively through gel analysis and quantitatively by the signal amplification from AgNCs to QDs via FRET, best measured at an excitation wavelength of 350 nm and at emission wavelengths of 550 and 590 nm. Three microRNAs (microRNA-21, microRNA-155 and Let-7a) were quantified to verify the feasibility of the method, and a high sensitivity for microRNAs was achieved. Fluorescence intensity increases linearly with the log of the concentration of microRNA 155 in the 5.0 pM to 50 nM range, with a 1.2 pM detection limit.

Graphical abstract

Schematic presentation of a quantum dot-based (QD-based) fluorescence resonance energy transfer technique for the detection of microRNA (miRNA). The method relies on energy transfer between DNA-templated silver nanoclusters (AgNCs) and QDs.

Keywords

Resonance energy transfer Nanobiosensor Quantum dots Biomarker Nanoclusters Fluorescence 

Notes

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2512_MOESM1_ESM.docx (3.6 mb)
ESM 1 (DOCX 3707 kb)

References

  1. 1.
    Zhu J, Zheng Z, Wang J, Sun J, Wang P, Cheng X, Fu L, Zhang L, Wang Z, Li Z (2014) Different miRNA expression profiles between human breast cancer tumors and serum. Front Genet 5:149CrossRefGoogle Scholar
  2. 2.
    Van Schooneveld E, Wildiers H, Vergote I, Vermeulen PB, Dirix LY, Van Laere SJ (2015) Dysregulation of microRNAs in breast cancer and their potential role as prognostic and predictive biomarkers in patient management. Breast Cancer Res 17:21CrossRefGoogle Scholar
  3. 3.
    Zhao SY, Wu Q, Gao F, Zhang CB, Yang XW (2012) Increased expression of MicroRNA-155 in the serum of women with early-stage breast cancer. Lab Med 43:177–180CrossRefGoogle Scholar
  4. 4.
    Wang J, Zhang KY, Liu SM, Sen S (2014) Tumor-associated circulating MicroRNAs as biomarkers of cancer. Molecules 19:1912–1938CrossRefGoogle Scholar
  5. 5.
    Shan J, Ma Z (2017) A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184(4):969–979CrossRefGoogle Scholar
  6. 6.
    Gurses HE, Hatipoglu OF, Gunduz M, Gunduz E (2015) MicroRNAs as therapeutic targets in human breast cancer. In: Gunduz M (ed) A concise review of molecular pathology of breast cancer, chapter 5. InTech, Croatia, pp 121–137Google Scholar
  7. 7.
    Bertoli G, Cava C, Castiglioni I (2015) MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 5(10):1122CrossRefGoogle Scholar
  8. 8.
    McGuire A, Brown JA, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 34:145–155CrossRefGoogle Scholar
  9. 9.
    Guo J, Jiang W, Xu X, Zheng X (2016) Serum microRNA-155 in early diagnosis and prognosis of breast cancer. Int J Clin Exp Med 9:10289–10296Google Scholar
  10. 10.
    Wen Y, Liu G, Pei H, Li L, Xu Q, Liang W, Li Y, Xu L, Ren S (2013) Chunhai Fan DNA nanostructure-based ultrasensitive electrochemical microRNA biosensor. Methods 64:276–282CrossRefGoogle Scholar
  11. 11.
    Huang YL, Mo S, Gao ZF, Chen JR, Lei JL, Luo HQ, Li NB (2017) Amperometric biosensor for microRNA based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification. Microchim Acta 184(8):2597–2604CrossRefGoogle Scholar
  12. 12.
    Zhou L, Wang J, Chen Z, Li J, Wang T, Zhang Z, Xie G (2017) A universal electrochemical biosensor for the highly sensitive determination of microRNAs based on isothermal target recycling amplification and a DNA signal transducer triggered reaction. Microchim Acta 5:1305–1313CrossRefGoogle Scholar
  13. 13.
    Liu H, Bei X, Xia Q, Fu Y, Zhang S, Liu M, Fan K, Zhang M, Yang Y (2016) Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy. Microchim Acta 183:297–304CrossRefGoogle Scholar
  14. 14.
    Fiammengo R (2017) Can nanotechnology improve cancer diagnosis through miRNA detection? Biomark Med 11:69–86CrossRefGoogle Scholar
  15. 15.
    Hosseini M, Ahmadi E, Borghei YS, Ganjali MR (2017) A new fluorescence turn-on nanobiosensor for the detection of micro-RNA-21 based on a DNA–gold nanocluster. Methods Appl Fluoresc 5:015005CrossRefGoogle Scholar
  16. 16.
    Borghei YS, Hosseini M, Khoobi M, Ganjali MR (2016) Novel fluorometric assay for detection of cysteine as a reducing agent and template in formation of copper nanoclusters. J Fluoresc 27:529–536CrossRefGoogle Scholar
  17. 17.
    Borghei YS, Hosseinia M, Ganjali MR, Hosseinkhani S (2017) Label-free fluorescent detection of microRNA-155 based on synthesis of hairpin DNA-templated copper nanoclusters by etching (top-downapproach). Sensors Actuators B Chem 248:133–139CrossRefGoogle Scholar
  18. 18.
    Borghei YS, Hosseini M, Ganjali MR (2017) Fluorescence based turn-on strategy for determination of microRNA-155 using DNA-templated copper nanoclusters. Microchim Acta 184(8):2671–2677CrossRefGoogle Scholar
  19. 19.
    Hosseini M, Mohammadi S, Borghei YS, Ganjali MR (2017) Detection of p53 gene mutation (single-base mismatch) using a fluorescent silver nanoclusters. J Fluoresc 27:1443–1448CrossRefGoogle Scholar
  20. 20.
    Obliosca JM, Liua C, Yeh HC (2013) Fluorescent silver nanoclusters as DNA probes. Nano 5:8443–8461Google Scholar
  21. 21.
    Kermani HA, Hosseini M, Dadmehr M, Ganjali MR (2016) Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters. Anal Bioanal Chem 408:4311–4318CrossRefGoogle Scholar
  22. 22.
    Dadmehr M, Hosseini M, Hosseinkhani S, Ganjali MR, Sheikhnejad R (2015) Label free colorimetric and fluorimetric direct detection of methylated DNA based on silver nanoclusters for cancer early diagnosis. Biosens Bioelectron 73:108–113CrossRefGoogle Scholar
  23. 23.
    Shokri E, Hosseini M, Faridbod F, Rahaie M (2016) Rapid pre-symptomatic recognition of tristeza viral RNA by a novel fluorescent self-dimerized DNA–silver nanocluster probe. RSC Adv 6:99437–99443CrossRefGoogle Scholar
  24. 24.
    Qin L, He X, Chen L, Zhang Y (2015) Turn-on fluorescent sensing of glutathione S-Transferase at near-infrared region based on FRET between gold nanoclusters and gold Nanorods. ACS Appl Mater Interfaces 7:5965–5971CrossRefGoogle Scholar
  25. 25.
    Kumar Kailasa S, Cheng KH, Wu HF (2013) Semiconductor nanomaterials-based fluorescence spectroscopic and matrix-assisted laser desorption/ionization (MALDI) mass spectrometric approaches to proteome analysis. Materials 6:5763–5795CrossRefGoogle Scholar
  26. 26.
    Hosseini M, Akbari A, Ganjali MR, Dadmehr M, Rezayan AH (2015) A novel label-free microRNA-155 detection on the basis of fluorescent silver nanoclusters. J Fluoresc 25:925–929CrossRefGoogle Scholar
  27. 27.
    Hosseini M, Ganjali MR, Vaezi Z, Arabsorkhi B, Dadmeh M, Faridbod F, Norouzi P (2015) Selective recognition histidine and tryptophan by enhancedchemiluminescence ZnSe quantum dots. Sensors Actuators B Chem 210:349–354CrossRefGoogle Scholar
  28. 28.
    Yuan Y, Zhang J, Liang G, Yang X (2012) Rapid fluorescent detection of neurogenin3 by CdTe quantum dot aggregation. Analyst 137:1775–1778CrossRefGoogle Scholar
  29. 29.
    Wang Z, He H, Slough W, Pandey R, Karna SP (2015) Nature of interaction between semiconducting nanostructures and biomolecules: Chalcogenide QDs and BNNT with DNA molecules. J Phys Chem C 119:25965–25973CrossRefGoogle Scholar
  30. 30.
    Russ Algar W, Krull UJ (2006) Adsorption and hybridization of oligonucleotides on mercaptoacetic acid-capped CdSe/ZnS quantum dots and quantum dot-oligonucleotide conjugates. Langmuir 22:11346–11352CrossRefGoogle Scholar
  31. 31.
    Shankara Narayanan S, Sekhar Sinha S, Kumar Verma P, Kumar Pal S (2008) Ultrafast energy transfer from 3-mercaptopropionic acid-capped CdSe/ZnS QDs to dye-labelled DNA. Chem Phys Lett 463:160–165CrossRefGoogle Scholar
  32. 32.
    Li H, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 39:14036–14039CrossRefGoogle Scholar
  33. 33.
    Liu Y, Yang Y, Zhao X, Liu Z, Li Y (2013) Responsive disassembly of the gold nanoparticle aggregates triggered by the competitive adsorption for lighting up the colorimetric sensing. Anal Methods 13:3242–3247CrossRefGoogle Scholar
  34. 34.
    Khakbaz F, Mahani M (2017) Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes. Anal Biochem 523:32–38CrossRefGoogle Scholar
  35. 35.
    Larkey NE, Zhang L, Lansing SS, Tran V, Seewaldt VL, Burrows SM (2016) Förster Resonance energy transfer to impart signal-on and -off capabilities in a single microRNA biosensor. Analyst 141:6239CrossRefGoogle Scholar
  36. 36.
    Li J, Li D, Yuan R, Xiang Y (2017) Biodegradable MnO2 nanosheet-mediated signal amplification in living cells enables sensitive detection of down-regulated intracellular MicroRNA. ACS Appl Mater Interfaces 9:5717–5724CrossRefGoogle Scholar
  37. 37.
    Wu X, Zhu S, Huang P, Chen Y (2016) Highly specific quantification of microRNA by coupling probe-rolling circle amplification and Förster resonance energy transfer. Anal Biochem 502:16–23CrossRefGoogle Scholar
  38. 38.
    Zhou Y, Zhang J, Zhao L, Li Y, Chen H, Li S, Cheng Y (2016) Visual detection of multiplex microRNAs using cationic conjugated polymer materials. ACS Appl Mater Interfaces 8:1520–1526CrossRefGoogle Scholar
  39. 39.
    Qiu X, Hildebrandt N (2015) Rapid and multiplexed MicroRNA diagnostic assay using quantum dot-based Förster resonance energy transfer. ACS Nano 9:8449–8457CrossRefGoogle Scholar
  40. 40.
    Zhang H, Wang Y, Zhao D, Zeng D, Xia J, Aldalbahi A, Wang C, San L, Fan C, Zuo X, Mi X (2015) Universal fluorescence biosensor platform based on Graphene quantum dots and Pyrene-functionalized molecular beacons for detection of MicroRNAs. ACS Appl Mater Interfaces 7:16152–16156CrossRefGoogle Scholar
  41. 41.
    Jin Z, Geibler D, Qiu X, David Wegner K, Hildebrandt N (2015) A rapid, amplification-free, and sensitive diagnostic assay for single-step multiplexed fluorescence detection of MicroRNA. Angew Chem Int Ed 54:10024–10029CrossRefGoogle Scholar
  42. 42.
    Su S, Fan J, Xue B, Yuwen L, Liu X, Pan D, Fan C, Wang L (2014) DNA-conjugated quantum dot Nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA. ACS Appl Mater Interfaces 6:1152–1157CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria 2017

Authors and Affiliations

  • Yasaman-Sadat Borghei
    • 1
  • Morteza Hosseini
    • 1
    • 2
  • Mohammad Reza Ganjali
    • 3
    • 4
  1. 1.Department of Life Science Engineering, Faculty of New Sciences & TechnologiesUniversity of TehranTehranIran
  2. 2.Medical Biomaterials Research CenterTehran University of Medical SciencesTehranIran
  3. 3.Center of Excellence in Electrochemistry, Faculty of ChemistryUniversity of TehranTehranIran
  4. 4.Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations