Microchimica Acta

, Volume 184, Issue 5, pp 1489–1497 | Cite as

Real-time monitoring of the UV-induced formation of quantum dots on a milliliter, microliter, and nanoliter scale

  • Lukas Nejdl
  • Jan Zitka
  • Filip Mravec
  • Vedran Milosavljevic
  • Ondrej Zitka
  • Pavel Kopel
  • Vojtech Adam
  • Marketa VaculovicovaEmail author
Original Paper


The authors report on a systematic study on the low-cost, low-temperature, and fast synthesis of water soluble quantum dots (QDs) stabilized by mercaptosuccinic acid by UV irradiation. The effects of UV irradiation (at 254 nm and 250 nm) and temperature on the precursors (Cd:Se, Cd:Te, Cd, Zn:S, Zn:Se and Zn) are described. Best results are achieved with a mixture of precursors containing cadmium, selenium and MSA where a 10-min irradiation with 254-nm light gives CdSe QDs with a quantum yield of 13.5%. The authors also describe the preparation and monitoring of the formation of QDs in sub-mg, sub-μg and sub-ng quantities, the smallest concentration being 258 pg in volume of 4 nL. The growth of the QDs can be monitored in real time by absorption, fluorescence and dynamic light scattering. The solutions of the particles also are characterized by fluorescence correlation spectroscopy and detected by LED-induced fluorescence. The preparation of such QDs by UV radiation is simple, easily controllable, and inexpensive. Conceivably, it can be integrated with lab-on-chip, micro total analysis systems or other instrumentation.

Graphical abstract

Monitoring of formation of quantum dots (QDs) by UV irradiation in different volumes (mL, μL and nL) by fluorescence correlation spectroscopy and capillary electrophoresis with light emitting diode-induced fluorescence detection.


Nanocrystal Capillary electrophoresis Irradiation Fluorescence 



Financial support was provided by Grant agency of Czech Republic (GACR 16-23647Y) and project CEITEC 2020 (LQ1601) with financial support from the Ministry of Education, Youth and Sports of the Czech Republic under the National Sustainability Programme II.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2149_MOESM1_ESM.docx (31 kb)
ESM 1 (DOCX 31 kb)


  1. 1.
    Kilina SV, Tamukong PK, Kilin DS (2016) Surface chemistry of semiconducting quantum dots: theoretical perspectives. Accounts Chem Res 49:2127–2135CrossRefGoogle Scholar
  2. 2.
    Singh G, Fisch M, Kumar S (2016) Emissivity and electrooptical properties of semiconducting quantum dots/rods and liquid crystal composites: a review. Rep Prog Phys 79Google Scholar
  3. 3.
    Zhou J, Yang Y, Zhang CY (2015) Toward biocompatible semiconductor quantum dots: from biosynthesis and Bioconjugation to biomedical application. Chem Rev 115:11669–11717CrossRefGoogle Scholar
  4. 4.
    Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381CrossRefGoogle Scholar
  5. 5.
    Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937CrossRefGoogle Scholar
  6. 6.
    Reimann SM, Manninen M (2002) Electronic structure of quantum dots. Rev Mod Phys 74:1283–1342CrossRefGoogle Scholar
  7. 7.
    Lin P, Chen JW, Chang LW, Wu JP, Redding L, Chang H, Yeh TK, Yang CS, Tsai MH, Wang HJ, Kuo YC, Yang RSH (2008) Computational and ultrastructural toxicology of a nanoparticle, quantum dot 705, in mice. Environ Sci Technol 42:6264–6270CrossRefGoogle Scholar
  8. 8.
    Tan L, Rang CC, Xu SY, Tang YW (2013) Selective room temperature phosphorescence sensing of target protein using Mn-doped ZnS QDs-embedded molecularly imprinted polymer. Biosens Bioelectron 48:216–223CrossRefGoogle Scholar
  9. 9.
    LeCroy GE, Yang ST, Yang F, Liu YM, Fernando KAS, Bunker CE, Hu Y, Luo PG, Sun YP (2016) Functionalized carbon nanoparticles: syntheses and applications in optical bioimaging and energy conversion. Coord Chem Rev 320:66–81CrossRefGoogle Scholar
  10. 10.
    Galian RE, de la Guardia M (2009) The use of quantum dots in organic chemistry. Trac-Trends Anal Chem 28:279–291CrossRefGoogle Scholar
  11. 11.
    Wang YL, Xia YN (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4:2047–2050CrossRefGoogle Scholar
  12. 12.
    Ghosh B, Shirahata N (2014) Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range. Sci Technol Adv Mater 15(1):014207Google Scholar
  13. 13.
    Erdem T, Soran-Erdem Z, Hernandez-Martinez PL, Sharma VK, Akcali H, Akcali I, Gaponik N, Eychmuller A, Demir HV (2015) Sweet plasmonics: sucrose macrocrystals of metal nanoparticles. Nano Res 8:860–869CrossRefGoogle Scholar
  14. 14.
    Koch CC (2003) Top-down synthesis of nanostructured materials: mechanical and thermal processing methods. Rev Adv Mater Sci 5:91–99Google Scholar
  15. 15.
    Amendola V, Meneghetti M, Granozzi G, Agnoli S, Polizzi S, Riello P, Boscaini A, Anselmi C, Fracasso G, Colombatti M, Innocenti C, Gatteschi D, Sangregorio C (2011) Top-down synthesis of multifunctional iron oxide nanoparticles for macrophage labelling and manipulation. J Mater Chem 21:3803–3813CrossRefGoogle Scholar
  16. 16.
    Bertino MF, Gadipalli RR, Martin LA, Heckman B, Leventis N, Guha S, Katsoudas J, Divan R, Mancini DC (2008) 236th National Meeting of the American-Chemical-Society, Philadelphia, PA, Aug 17-21, 2008. Published in: Abstracts of papers of the American Chemical Society, Vol. 236Google Scholar
  17. 17.
    Wu JZ, Ho PC (2006) Evaluation of the in vitro activity and in vivo bioavailability of realgar nanoparticles prepared by cryo-grinding. Eur J Pharm Sci 29:35–44CrossRefGoogle Scholar
  18. 18.
    Zeng HB, Cai WP, Liu PS, Xu XX, Zhou HJ, Klingshirn C, Kalt H (2008) ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal-semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2:1661–1670CrossRefGoogle Scholar
  19. 19.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdA (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  20. 20.
    Peng ZA, Peng XG (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184CrossRefGoogle Scholar
  21. 21.
    Rogach AL, Katsikas L, Kornowski A, Su DS, Eychmuller A, Weller H (1996) Synthesis and characterization of thiol-stabilized CdTe nanocrystals. Ber Bunsen-Ges Phys Chem Chem Phys 100:1772–1778CrossRefGoogle Scholar
  22. 22.
    Talapin DV, Rogach AL, Shevchenko EV, Kornowski A, Haase M, Weller H (2002) Dynamic distribution of growth rates within the ensembles of colloidal II-VI and III-V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J Am Chem Soc 124:5782–5790CrossRefGoogle Scholar
  23. 23.
    Zhu YL, Li CS, Xu Y, Wang DF (2014) Ultrasonic-assisted synthesis of aqueous CdTe/CdS QDs in salt water bath heating. J Alloy Compd 608:141–147CrossRefGoogle Scholar
  24. 24.
    Lin YW, Hsieh MM, Liu CP, Chang HT (2005) Photoassisted synthesis of CdSe and core-shell CdSe/CdS quantum dots. Langmuir 21:728–734CrossRefGoogle Scholar
  25. 25.
    Li XQ, Xu HZ, Chen ZS, Chen GF (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. doi: 10.1155/2011/270974
  26. 26.
    Kominkova M, Michalek P, Moulick A, Nemcova B, Zitka O, Kopel P, Beklova M, Adam V, Kizek R (2014) Biosynthesis of quantum dots (CdTe) and its effect on Eisenia fetida and Escherichia coli. Chromatographia 77:1441–1449CrossRefGoogle Scholar
  27. 27.
    Borovaya MN, Naumenko AP, Matvieieva NA, Blume YB, Yemets AI (2014) Biosynthesis of luminescent CdS quantum dots using plant hairy root culture. Nanoscale Res Lett 9. doi: 10.1186/1556-276X-9-686
  28. 28.
    Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surf B-Biointerfaces 28:313–318CrossRefGoogle Scholar
  29. 29.
    Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  30. 30.
    Kandiel TA, Dillert R, Feldhoff A, Bahnemann DW (2010) Direct synthesis of Photocatalytically active rutile TiO2 nanorods partly decorated with Anatase nanoparticles. J Phys Chem C 114:4909–4915CrossRefGoogle Scholar
  31. 31.
    Liu XJ, Pan LK, Zhao QF, Lv T, Zhu G, Chen TQ, Lu T, Sun Z, Sun CQ (2012) UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J 183:238–243CrossRefGoogle Scholar
  32. 32.
    Adegboyega NF, Sharma VK, Cizmas L, Sayes CM (2016) UV light induces Ag nanoparticle formation: roles of natural organic matter, iron, and oxygen. Environ Chem Lett 14:353–357CrossRefGoogle Scholar
  33. 33.
    Lan GY, Lin YW, Huang YF, Chang HT (2007) Photo-assisted synthesis of highly fluorescent ZnSe(S) quantum dots in aqueous solution. J Mater Chem 17:2661–2666CrossRefGoogle Scholar
  34. 34.
    Uematsu T, Kitajima H, Kohma T, Torimoto T, Tachibana Y, Kuwabata S (2009) Tuning of the fluorescence wavelength of CdTe quantum dots with 2 nm resolution by size-selective photoetching. Nanotechnology 20(21):215302Google Scholar
  35. 35.
    Shang YZ, Min CZ, Hu J, Wang TM, Liu HL, Hu Y (2013) Synthesis of gold nanoparticles by reduction of HAuCl4 under UV irradiation. Solid State Sci 15:17–23CrossRefGoogle Scholar
  36. 36.
    Kao M, Erasmus RM, Moloto N, Coville NJ, Mhlanga SD (2015) UV-assisted synthesis of indium nitride nano and microstructures. J Mater Chem A 3:5962–5970CrossRefGoogle Scholar
  37. 37.
    Krizkova S, Dostalova S, Michalek P, Nejdl L, Kominkova M, Milosavljevic V, Moulick A, Vaculovicova M, Kopel P, Adam V, Kizek R (2015) SDS-PAGE as a tool for hydrodynamic diameter-dependent separation of quantum dots. Chromatographia 78:785–793CrossRefGoogle Scholar
  38. 38.
    Samanta A, Deng ZT, Liu Y (2012) Aqueous synthesis of glutathione-capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS Core/Shell/Shell nanocrystal Heterostructures. Langmuir 28:8205–8215CrossRefGoogle Scholar
  39. 39.
    Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRefGoogle Scholar
  40. 40.
    Carrillo-Carrion C, Cardenas S, Simonet BM, Valcarcel M (2009) Quantum dots luminescence enhancement due to illumination with UV/Vis light. Chem Commun 45(35):5214–5226Google Scholar
  41. 41.
    Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202CrossRefGoogle Scholar
  42. 42.
    Chakrabarty A, Marre S, Landis RF, Rotello VM, Maitra U, Del Guerzo A, Aymonier C (2015) Continuous synthesis of high quality CdSe quantum dots in supercritical fluids. J Mater Chem C 3:7561–7566CrossRefGoogle Scholar
  43. 43.
    Nightingale AM, Krishnadasan SH, Berhanu D, Niu X, Drury C, McIntyre R, Valsami-Jones E, deMello JC (2011) A stable droplet reactor for high temperature nanocrystal synthesis. Lab Chip 11:1221–1227CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Lukas Nejdl
    • 1
    • 2
  • Jan Zitka
    • 1
    • 2
  • Filip Mravec
    • 3
  • Vedran Milosavljevic
    • 1
    • 2
  • Ondrej Zitka
    • 1
    • 2
  • Pavel Kopel
    • 1
    • 2
  • Vojtech Adam
    • 1
    • 2
  • Marketa Vaculovicova
    • 1
    • 2
    Email author
  1. 1.Department of Chemistry and BiochemistryMendel University in BrnoBrnoCzech Republic
  2. 2.Central European Institute of TechnologyBrno University of TechnologyBrnoCzech Republic
  3. 3.Materials Research Centre, Faculty of ChemistryBrno University of TechnologyBrnoCzech Republic

Personalised recommendations