Microchimica Acta

, Volume 184, Issue 5, pp 1539–1545 | Cite as

A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles

  • Fei Jia
  • Lei Xu
  • Wenjie Yan
  • Wei Wu
  • Qianqian Yu
  • Xiaojing Tian
  • Ruitong Dai
  • Xingmin Li
Original Paper


The authors describe a rapid and sensitive magnetic relaxation switch (MRSw) aptasensor for the determination of the food-borne pathogen Pseudomonas aeruginosa. An aptamer against P. aeruginosa is covalently bound to superparamagnetic iron oxide nanoparticles. On incubation with P. aeruginosa bacteria, they will be captured by the aptamer, and this affects the formation of SPIO aggregates. The resulting strong increase in the spin-spin relaxation time (T2) is utilized as the analytical information to quantify the bacteria. Under optimized conditions, the assay has a linear range that extends from 100 cfu⋅mL−1 to 106 cfu⋅mL−1, and a detection limit of 50 cfu⋅mL−1 (at an S/N ratio of 3). The method was applied to the detection of P. aeruginosa in (spiked) real food and drinking water samples and was validated by the established plate counting method. This aptasensor is considered to represent a promising platform for the determination of P. aeruginosa. Conceivably, the method may be extended to other food-borne bacteria or biomolecules for which respective aptamers are available.

Graphical abstract

Schematic of the magnetic relaxation switch aptasensor for Pseudomonas aeruginosa detection. The superparamagnetic nanoparticles act as a “switch” to detect aggregated and dispersed states with and without target, which leads to substantial changes in the T2 relaxation time.


Transverse relaxation time Carr-Purcell-Meiboom-Gill pulse sequence Foodborne pathogen Particle aggregation Low-field NMR Meat spoilage 



This work was supported by the National S&T Support Program of China and the China Agriculture Research System Poultry-related Science and Technology Innovation Team of Peking (CARS-PSTP).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2142_MOESM1_ESM.doc (709 kb)
ESM 1 (DOC 709 kb)


  1. 1.
    Aghamollaei H, Moghaddam MM, Kooshki H, Heiat M, Mirnejad R, Barzi NS (2015) Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI/R and gyrB genes. J Infect Public Health 8(4):314–322CrossRefGoogle Scholar
  2. 2.
    Amiri MA, Mohammadinia M, Tabatabaee M, Askarizadeh F, Behgozin A (2011) Comparative efficacies of contact lens disinfecting solutions against Pseudomonas aeruginosa. Clin Exp Optom 94(4):348–351CrossRefGoogle Scholar
  3. 3.
    Mungroo NA, Oliveira G, Neethirajan S (2015) SERS based point-of-care detection of food-borne pathogens. Microchim Acta 183(2):697–707CrossRefGoogle Scholar
  4. 4.
    He F, Liu S (2004) Detection of P. aeruginosa using nano-structured electrode-separated piezoelectric DNA biosensor. Talanta 62(2):271–277CrossRefGoogle Scholar
  5. 5.
    Motoshima M, Yanagihara K, Fukushima K, Matsuda J, Sugahara K, Hirakata Y, Yamada Y, Kohno S, Kamihira S (2007) Rapid and accurate detection of Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis targeting gyrB gene. Diagn Microbiol Infect Dis 58(1):53–58CrossRefGoogle Scholar
  6. 6.
    Park JS, Lee CM, Lee KY (2007) A surface plasmon resonance biosensor for detecting Pseudomonas aeruginosa cells with self-assembled chitosan-alginate multilayers. Talanta 72(2):859–862CrossRefGoogle Scholar
  7. 7.
    Colinon C, Deredjian A, Hien E, Brothier E, Bouziri L, Cournoyer B, Hartman A, Henry S, Jolivet C, Ranjard L, Nazaret S (2013) Detection and enumeration of Pseudomonas aeruginosa in soil and manure assessed by anecfXqPCR assay. J Appl Microbiol 114(6):1734–1749CrossRefGoogle Scholar
  8. 8.
    Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B (2007) Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods 70(1):20–29CrossRefGoogle Scholar
  9. 9.
    Kamelipour N, Mohsenifar A, Tabatabaei M, Rahmani-Cherati T, Khoshnevisan K, Allameh A, Milani MM, Najavand S, Etemadikia B (2013) Fluorometric determination of paraoxon in human serum using a gold nanoparticle-immobilized organophosphorus hydrolase and coumarin 1 as a competitive inhibitor. Microchim Acta 181(1–2):239–248Google Scholar
  10. 10.
    Anuj SN, Whiley DM, Kidd TJ, Bell SC, Wainwright CE, Nissen MD, Sloots TP (2009) Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction assay targeting the ecfX and the gyrB genes. Diagn Microbiol Infect Dis 63(2):127–131CrossRefGoogle Scholar
  11. 11.
    Deschaght P, De Baere T, Van Simaey L, Van daele S, De Baets F, De Vos D, Pirnay J-P, Vaneechoutte M (2009) Comparison of the sensitivity of culture, PCR and quantitative real-time PCR for the detection of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. BMC Microbiol 9(1):244CrossRefGoogle Scholar
  12. 12.
    Atzél B, Szoboszlay S, Mikuska Z, Kriszt B (2008) Comparison of phenotypic and genotypic methods for the detection of environmental isolates of Pseudomonas aeruginosa. Int J Hyg Environ Health 211(1–2):143–155CrossRefGoogle Scholar
  13. 13.
    Cattoir V, Gilibert A, Le Glaunec J-M, Launay N, Bait-Mérabet L, Legrand P (2010) Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR. Ann Clin Microbiol Antimicrob 9(1):21CrossRefGoogle Scholar
  14. 14.
    Yuan J, Wu S, Duan N, Ma X, Xia Y, Chen J, Ding Z, Wang Z (2014) A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 127:163–168CrossRefGoogle Scholar
  15. 15.
    Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100–3107CrossRefGoogle Scholar
  16. 16.
    Perez JM, Josephson L, O'Loughlin T, Högemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820CrossRefGoogle Scholar
  17. 17.
    Ghazani AA, Pectasides M, Sharma A, Castro CM, Mino-Kenudson M, Lee H, Shepard J-A O, Weissleder R (2014) Molecular characterization of scant lung tumor cells using iron-oxide nanoparticles and micro-nuclear magnetic resonance. Nanomed Nanotechnol Biol Med 10(3):661–668CrossRefGoogle Scholar
  18. 18.
    Jeong S, Park J, Pathania D, Castro CM, Weissleder R, Lee H (2016) Integrated magneto–electrochemical sensor for exosome analysis. ACS Nano 10(2):1802–1809CrossRefGoogle Scholar
  19. 19.
    Lee H, Shin T-H, Cheon J, Weissleder R (2015) Recent developments in magnetic diagnostic systems. Chem Rev 115(19):10690–10724CrossRefGoogle Scholar
  20. 20.
    Koh I, Hong R, Weissleder R, Josephson L (2008) Sensitive NMR sensors detect antibodies to influenza. Angew Chem Int Ed 47(22):4119–4121CrossRefGoogle Scholar
  21. 21.
    Koh I, Josephson L (2009) Magnetic nanoparticle sensors. Sensors (Basel) 9(10):8130–8145CrossRefGoogle Scholar
  22. 22.
    Han M, Wang P, Xu X, Zhou G (2014) Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res Int 62:1175–1182CrossRefGoogle Scholar
  23. 23.
    Li C, Liu D, Zhou G, Xu X, Qi J, Shi P, Xia T (2012) Meat quality and cooking attributes of thawed pork with different low field NMR T(21). Meat Sci 92(2):79–83CrossRefGoogle Scholar
  24. 24.
    Chen YP, Zou M q, Qi C, Xie M-X, Wang D-N, Wang Y-F, Xue Q, Li J-F, Chen Y (2013) Immunosensor based on magnetic relaxation switch and biotin–streptavidin system for the detection of kanamycin in milk. Biosens Bioelectron 39(1):112–117CrossRefGoogle Scholar
  25. 25.
    Chen Y, Zou M, Wang D, Li Y, Xue Q, Xie M, Qi C (2013) An immunosensor based on magnetic relaxation switch and polystyrene microparticle-induced immune multivalency enrichment system for the detection of Pantoea stewartii subsp. Stewartii. Biosens Bioelectron 43:6–11CrossRefGoogle Scholar
  26. 26.
    Liang G, Xiao L, Chen H, Liu Q, Zhang S, Li F, Kong J (2013) Label-free, nucleotide-mediated dispersion of magnetic nanoparticles for “non-sandwich type” MRI-based quantification of enzyme. Biosens Bioelectron 41:78–83CrossRefGoogle Scholar
  27. 27.
    Ganssle PJ, Shin HD, Seltzer SJ, Bajaj VS, Ledbetter MP, Budker D, Knappe S, Kitching J, Pines A (2014) Ultra-low-field NMR relaxation and diffusion measurements using an optical magnetometer. Angew Chem Int Ed 53(37):9766–9770CrossRefGoogle Scholar
  28. 28.
    Chen J, Duncan B, Wang Z, Wang LS, Rotello VM, Nugen SR (2015) Bacteriophage-based nanoprobes for rapid bacteria separation. Nanoscale 7(39):16230–16236CrossRefGoogle Scholar
  29. 29.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2010) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 110(4):2574–2574CrossRefGoogle Scholar
  30. 30.
    Yang H, Tian Z, Wang J, Yang S (2012) A magnetic resonance imaging nanosensor for Hg (II) based on thymidine-functionalized supermagnetic iron oxide nanoparticles. Sensors Actuators B Chem 161(1):429–433CrossRefGoogle Scholar
  31. 31.
    Shen J, Yang Y, Zhang Y, Yang H, Zhou Z, Yang S (2016) Functionalized Au-Fe3O4 nanocomposites as a magnetic and colorimetric bimodal sensor for melamine. Sensors Actuators B Chem 226:512–517CrossRefGoogle Scholar
  32. 32.
    Xu L, Yin H, Ma W, Wang L, Kuang H, Xu C (2013) MRI biosensor for lead detection baesd on the DNAzyme-induced catalytic reaction. J Phys Chem B 117:14367–14371CrossRefGoogle Scholar
  33. 33.
    Zhao Y, Yao Y, Xiao M, Chen Y, Lee CCC, Zhang L, Zhang KX, Yang S, Gu M (2013) Rapid detection of Cronobacter sakazakii in dairy food by biofunctionalized magnetic nanoparticle based on nuclear magnetic resonance. Food Control 34(2):436–443CrossRefGoogle Scholar
  34. 34.
    Fratila RM, Moros M, de la Fuente JM (2015) Recent advances in biosensing using magnetic glyconanoparticles. Anal Bioanal Chem 408(7):1783–1803CrossRefGoogle Scholar
  35. 35.
    Wang S, Zhang Y, An W, Wei Y, Liu N, Chen Y, Shuang S (2015) Magnetic relaxation switch immunosensor for the rapid detection of the foodborne pathogen salmonella enterica in milk samples. Food Control 55:43–48CrossRefGoogle Scholar
  36. 36.
    Wang KY, Zeng YL, Yang XY, Li WB, Lan XP (2011) Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis 30(2):273–278CrossRefGoogle Scholar
  37. 37.
    Jia F, Duan N, Wu S, Dai R, Wang Z, Li X (2015) Impedimetric salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Microchim Acta 183(1):337–344CrossRefGoogle Scholar
  38. 38.
    Choi HJ, Kim MH, Cho MS, Kim BK, Kim JY, Kim C, Park DS (2013) Improved PCR for identification of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 97(8):3643–3651CrossRefGoogle Scholar
  39. 39.
    Chen Y, Cheng N, Xu Y, Huang K, Luo Y, Xu W (2016) Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor. Biosens Bioelectron 81:317–323CrossRefGoogle Scholar
  40. 40.
    Minogue E, Reddington K, Dorai-Raj S, Tuite N, Clancy E, Barry T (2013) Diagnostics method for the rapid quantitative detection and identification of low-level contamination of high-purity water with pathogenic bacteria. J Ind Microbiol Biotechnol 40(9):1005–1013CrossRefGoogle Scholar
  41. 41.
    Shah N, Naseby DC (2015) Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens Bioelectron 68:447–453CrossRefGoogle Scholar
  42. 42.
    Liu X, Marrakchi M, Xu D, Dong H, Andreescu S (2012) Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosens Bioelectron 80:9–16CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  • Fei Jia
    • 1
  • Lei Xu
    • 1
  • Wenjie Yan
    • 2
  • Wei Wu
    • 1
  • Qianqian Yu
    • 1
  • Xiaojing Tian
    • 1
  • Ruitong Dai
    • 1
  • Xingmin Li
    • 1
  1. 1.College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.College of Applied Arts and ScienceBeijing Union UniversityBeijingChina

Personalised recommendations