Advertisement

Microchimica Acta

, Volume 184, Issue 4, pp 1199–1206 | Cite as

Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots

  • Haiyan Xu
  • Kaina Zhang
  • Qisi Liu
  • Yuan LiuEmail author
  • Mengxia XieEmail author
Original Paper

Abstract

The authors describe a carbon dot (CD) based dual-emission ratiometric optical probe for the on-site visual and fluorometric determination of mercury(II) ions. The nanoparticle (NP) probe was obtained by covalently linking the blue emissive carbon dots to the surface of silica nanoparticles containing red-emissive quantum dots (QDs). The red emitting QDs in the silica matrix are inert to Hg(II) and provide a reliable and constant reference signal. They also reduce their toxicity and improve the optical and chemical stabilities, while the blue emission CDs are very sensitive to Hg(II). With increasing concentration of Hg(II), a solution containing the NP probe undergoes a continuous color change from light purple to red. This can be seen with bare eyes or detected instrumentally by measurement of fluorescence intensity under excitation/emission wavelengths of 350/453 and 658 nm. The probe exhibits high sensitivity to Hg(II), with a detection limit of 0.47 nM (at an S/N ratio of 3). This is much lower than the allowable level of mercury (10 nM, ~10 ppb) in drinking water set by the U.S. Environmental Protection Agency. For practical use, the probe was used to quantify Hg(II) in (spiked) tap water where it gave recoveries between 95 and 106% and relative standard deviations between 1.9 and 3.2%. The probe can also be applied in filter paper-based assays, and this paves the way to point-of-care pollution control. This ratiometric probe is nontoxic and easily operated, and therefore shows potential applications for rapid and low-cost visual identification of Hg(II).

Graphical abstract

Schematic of a carbon dot and quantum dot based dual-emission ratiometric optical and fluorescent probe for the on-site visual and fluorometric determination of mercury(II) ions. The probe is efficient, simple, and can be applied in filter paper-based assay.

Keywords

Q-dots@SiO2@C-dot hybrid spheres Microwave synthesis Quenching TEM Low toxicity Bare eye detection 

Notes

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2017_2099_MOESM1_ESM.docx (698 kb)
ESM 1 (DOCX 698 kb)

References

  1. 1.
    Dong Y, Cai J, You X, Chi Y (2015) Sensing applications of luminescent carbon based dots. Analyst 140(22):7468–7486. doi: 10.1039/c5an01487e CrossRefGoogle Scholar
  2. 2.
    Liu X, Zhang N, Bing T, Shangguan D (2014) Carbon dots based dual-emission silica nanoparticles as a ratiometric nanosensor for Cu(2+). Anal Chem 86(5):2289–2296. doi: 10.1021/ac404236y CrossRefGoogle Scholar
  3. 3.
    Jie Sha YS, Liu B, Lü C (2015) Host–guest-recognition-based polymer brush-functionalized mesoporous silica nanoparticles loaded with conjugated polymers: a facile FRET-based ratiometric probe for Hg2+. Microporous Mesoporous Mater 218:137–143. doi: 10.1016/j.micromeso.2015.07.014 CrossRefGoogle Scholar
  4. 4.
    Gong YJ, Zhang XB, Zhang CC, Luo AL, Fu T, Tan W, Shen GL, Yu RQ (2012) Through bond energy transfer: a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications. Anal Chem 84(24):10777–10784. doi: 10.1021/ac302762d CrossRefGoogle Scholar
  5. 5.
    Liu ZC, Qi JW, Hu C, Zhang L, Song W, Liang RP, Qiu JD (2015) Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions. Anal Chim Acta 895:95–103. doi: 10.1016/j.aca.2015.09.002 CrossRefGoogle Scholar
  6. 6.
    Yan Y, Yu H, Zhang K, Sun M, Zhang Y, Wang X, Wang S (2016) Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res 9(7):2088–2096. doi: 10.1007/s12274-016-1099-5 CrossRefGoogle Scholar
  7. 7.
    Kalita H, Mohapatra J, Pradhan L, Mitra A, Bahadur D, Aslam M (2016) Efficient synthesis of rice based graphene quantum dots and their fluorescent properties. RSC Adv 6:23518–235274. doi: 10.1039/c5ra25706a CrossRefGoogle Scholar
  8. 8.
    Yong KT, Law WC, Hu R, Ye L, Liu L, Swihart MT, Prasad PN (2013) Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 42(3):1236–1250. doi: 10.1039/c2cs35392j CrossRefGoogle Scholar
  9. 9.
    Youxing Fang SG, Li D, Zhu C, Ren W, Dong S, Wang E (2011) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6(1):400–409. doi: 10.1021/nn2046373 CrossRefGoogle Scholar
  10. 10.
    Yang S-T, Cao L, Luo PG, Lu F, Wang X, Wang H, Meziani MJ, Liu Y, Qi G, Sun Y-P (2009) Carbon Dots for Optical Imaging in Vivo. J Am Chem Soc 131:11308–11309. doi: 10.1021/ja904843x CrossRefGoogle Scholar
  11. 11.
    Zhiqiang Ye RT, Hao Wu, Beibei Wang, Mingqian Tan* and Jingli Yuana (2014) Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper(II) ions. NJC 38:5721–5726. doi: 10.1039/C4NJ00966E CrossRefGoogle Scholar
  12. 12.
    Zuo P, Lu X, Sun Z, Guo Y, He H (2015) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183(2):519–542. doi: 10.1007/s00604-015-1705-3 CrossRefGoogle Scholar
  13. 13.
    Lan M, Zhang J, Chui YS, Wang P, Chen X, Lee CS, Kwong HL, Zhang W (2014) Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Appl Mater Interfaces 6(23):21270–21278. doi: 10.1021/am5062568 CrossRefGoogle Scholar
  14. 14.
    Yan Y, Sun J, Zhang K, Zhu H, Yu H, Sun M, Huang D, Wang S (2015) Visualizing gaseous nitrogen dioxide by ratiometric fluorescence of carbon nanodots-quantum dots hybrid. Anal Chem 87(4):2087–2093. doi: 10.1021/ac503474x CrossRefGoogle Scholar
  15. 15.
    Zhuo L, Yong W, Yongnian N, Serge K (2015) A rapid and label-free dual detection of Hg (II) and cysteine with the use of fluorescence switching of graphene quantum dots. Sensors and Actuators B: Chem 207:490–497. doi: 10.1016/j.snb.2014.10.071 CrossRefGoogle Scholar
  16. 16.
    Li J, Lu L, Kang T, Cheng S (2016) Intense charge transfer surface based on graphene and thymine-Hg(II)-thymine base pairs for detection of Hg(2.). Biosens Bioelectron 77:740–745. doi: 10.1016/j.bios.2015.10.047 CrossRefGoogle Scholar
  17. 17.
    Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18(3):149–175. doi: 10.1002/tox.10116 CrossRefGoogle Scholar
  18. 18.
    Yunfei Long DJ, Xu Z, Wang J, Zhou F (2009) Trace Hg2 analysis via quenching of the fluorescence of a CdS-encapsulated DNA nanocomposite. Anal Chem 81:2652–2657. doi: 10.1021/ac802592r CrossRefGoogle Scholar
  19. 19.
    Huang D, Niu C, Wang X, Lv X, Zeng G (2013) "turn-on" fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode. Anal Chem 85(2):1164–1170. doi: 10.1021/ac303084d CrossRefGoogle Scholar
  20. 20.
    Koteeswari RA, Malar P, Ramakrishnan EJ, Ramamurthy VTP (2011) Highly selective, sensitive and quantitative detection of Hg2+ in aqueous medium under broad pH range. Chem Comm 47(27):7695–7697. doi: 10.1039/c1cc12018b CrossRefGoogle Scholar
  21. 21.
    Zhai Y, Zhu Z, Zhu C, Ren J, Wang E, Dong S (2014) Multifunctional water-soluble luminescent carbon. J Mater Chem 2:6995–6999. doi: 10.1039/c4tb01035c CrossRefGoogle Scholar
  22. 22.
    Yan X, Li H, Zheng W, Su X (2015) Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Anal Chem 87(17):8904–8909. doi: 10.1021/acs.analchem.5b02037 CrossRefGoogle Scholar
  23. 23.
    Wu L, Guo QS, Liu YQ, Sun QJ (2015) Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn(2+) using a dual-emission silica-coated quantum dots mixture. Anal Chem 87(10):5318–5323. doi: 10.1021/acs.analchem.5b00514 CrossRefGoogle Scholar
  24. 24.
    Wolcott ADG, Visconte M, Sun J, Schwartzberg A, Chen H, Zhang JZ (2006) Silica-coated CdTe quantum dots functionalized with thiols for Bioconjugation to IgG proteins. J Phys Chem B 110:5779. doi: 10.1021/jp057435z CrossRefGoogle Scholar
  25. 25.
    Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X (2012) Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 84(12):5351–5357. doi: 10.1021/ac3007939 CrossRefGoogle Scholar
  26. 26.
    Yan F, Zou Y, Wang M, Mu X, Yang N, Chen L (2014) Highly photoluminescent carbon dots-based fluorescent chemosensors for sensitive and selective detection of mercury ions and application of imaging in living cells. Sensors Actuators B Chem 192:488–495. doi: 10.1016/j.snb.2013.11.041 CrossRefGoogle Scholar
  27. 27.
    Tang W, Wang Y, Wang P, Di J, Yang J, Wu Y (2016) Synthesis of strongly fluorescent carbon quantum dots modified with polyamidoamine and a triethoxysilane as quenchable fluorescent probes for mercury(II). Microchim Acta 183(9):2571–2578. doi: 10.1007/s00604-016-1898-0 CrossRefGoogle Scholar
  28. 28.
    Guo Y, Zhang L, Cao F, Leng Y (2016) Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+. Scientific Reports 6:35795. doi: 10.1038/srep35795 CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Qiang H, Chen Z (2016) Colorimetric determination of Hg(II) based on a visually detectable signal amplification induced by a Cu@Au-Hg trimetallic amalgam with peroxidase-like activity. Microchim Acta 184(1):107–115. doi: 10.1007/s00604-016-2002-5 CrossRefGoogle Scholar
  30. 30.
    Chen Y, Wu L, Chen Y, Bi N, Zheng X, Qi H, Qin M, Liao X, Zhang H, Tian Y (2012) Determination of mercury(II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim Acta 177(3–4):341–348. doi: 10.1007/s00604-012-0777-6 CrossRefGoogle Scholar
  31. 31.
    Goh EJ, Kim KS, Kim YR, Jung HS, Beack S, Kong WH, Scarcelli G, Yun SH, Hahn SK (2012) Bioimaging of hyaluronic acid derivatives using Nanosized carbon dots. Biomacromolecules 13(8):2554–2561. doi: 10.1021/bm300796q CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2017

Authors and Affiliations

  1. 1.Analytical & Testing Center of Beijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations