Microchimica Acta

, Volume 184, Issue 2, pp 499–505 | Cite as

Electrochemical aptamer based assay for the neonicotinoid insecticide acetamiprid based on the use of an unmodified gold electrode

  • Seyed Mohammad Taghdisi
  • Noor Mohammad Danesh
  • Mohammad Ramezani
  • Khalil AbnousEmail author
Original Paper


The authors report on an aptamer-based electrochemical assay for the insecticide acetamiprid. It is based on the target-induced release of the redox probe Methylene Blue (MB) from the dsDNA formed between aptamer and complementary strand (Apt/CS), exonuclease I (Exo I) and silica nanoparticles coated with streptavidin (SiNP-Streptavidin). MB is detected electrochemically using an unmodified gold electrode. In the presence of acetamiprid, MB is released from the Apt/CS dsDNA and accumulated in the close environment of the gold electrode. This results in a strong electrochemical signal for MB at fairly low working voltage of typically −0.27 V. In the absence of target, however, the SiNP-streptavidin conjugate modified MB-dsDNA remains intact. Hence, the electrochemical signal remains weak. The method displays high selectivity for acetamiprid and a limit of detection as low as 153 pM. The assay was successfully applied to the determination of acetamiprid in (spiked) water and serum samples, with LODs of 161 and 209 pM, respectively.

Graphical abstract

Schematic illustration of acetamiprid detection based on electrochemical assay. In the absence of acetamiprid, MB-dsDNA-modified SiNP-Streptavidin complex is intact and redox probe (MB) does not exist in the environment of electrode, resulting in a weak electrochemical signal (a). In the presence of target, Apt binds to acetamiprid and CS and MB leave the SiNP-Streptavidin. Exo I digests CS. So, a huge amount of MB is present in the environment of electrode and a strong electrochemical signal is observed (b).


Methylene blue Differential pulse voltammetry Silica nanoparticles Insecticide Exonuclease I Complementary strand Water analysis Serum analysis 



Financial support of this study was provided by Mashhad University of Medical Sciences.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_2038_MOESM1_ESM.doc (153 kb)
ESM 1 (DOC 153 kb)


  1. 1.
    Shi H, Zhao G, Liu M, Fan L, Cao T (2013) Aptamer-based colorimetric sensing of acetamiprid in soil samples: sensitivity, selectivity and mechanism. J Hazard Mater 260:754–761. doi: 10.1016/j.jhazmat.2013.06.031 CrossRefGoogle Scholar
  2. 2.
    Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43(1):12–18. doi: 10.1016/j.bios.2012.11.033 CrossRefGoogle Scholar
  3. 3.
    Weerathunge P, Ramanathan R, Shukla R, Sharma TK, Bansal V (2014) Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Anal Chem 86(24):11937–11941. doi: 10.1021/ac5028726 CrossRefGoogle Scholar
  4. 4.
    Jiang D, Du X, Liu Q, Zhou L, Dai L, Qian J, Wang K (2015) Silver nanoparticles anchored on nitrogen-doped graphene as a novel electrochemical biosensing platform with enhanced sensitivity for aptamer-based pesticide assay. Analyst 140(18):6404–6411. doi: 10.1039/c5an01084e CrossRefGoogle Scholar
  5. 5.
    Li H, Qiao Y, Li J, Fang H, Fan D, Wang W (2016) A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens Bioelectron 77:378–384. doi: 10.1016/j.bios.2015.09.066 CrossRefGoogle Scholar
  6. 6.
    Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129. doi: 10.1016/j.bios.2015.03.028 CrossRefGoogle Scholar
  7. 7.
    Yang Z, Qian J, Yang X, Jiang D, Du X, Wang K, Mao H (2014) A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens Bioelectron 65:39–46. doi: 10.1016/j.bios.2014.10.004 CrossRefGoogle Scholar
  8. 8.
    Lin X, Leung KH, Lin L, Lin S, Leung CH, Ma DL, Lin JM (2016) Determination of cell metabolite VEGF165 and dynamic analysis of protein-DNA interactions by combination of microfluidic technique and luminescent switch-on probe. Biosens Bioelectron 79:41–47. doi: 10.1016/j.bios.2015.11.089 CrossRefGoogle Scholar
  9. 9.
    Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ (2016) A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron 78:315–320. doi: 10.1016/j.bios.2015.11.043 CrossRefGoogle Scholar
  10. 10.
    Reinemann C, Freiin von Fritsch U, Rudolph S, Strehlitz B (2016) Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens Bioelectron 77:1039–1047. doi: 10.1016/j.bios.2015.10.069 CrossRefGoogle Scholar
  11. 11.
    Yang F, Wang P, Wang R, Zhou Y, Su X, He Y, Shi L, Yao D (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352. doi: 10.1016/j.bios.2015.09.050 CrossRefGoogle Scholar
  12. 12.
    Wang B, Chen Y, Wu Y, Weng B, Liu Y, Lu Z, Li CM, Yu C (2016) Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens Bioelectron 78:23–30. doi: 10.1016/j.bios.2015.11.015 CrossRefGoogle Scholar
  13. 13.
    Jo EJ, Mun H, Kim SJ, Shim WB, Kim MG (2016) Detection of ochratoxin a (OTA) in coffee using chemiluminescence resonance energy transfer (CRET) aptasensor. Food Chem 194:1102–1107. doi: 10.1016/j.foodchem.2015.07.152 CrossRefGoogle Scholar
  14. 14.
    Mohammad Danesh N, Ramezani M, Sarreshtehdar Emrani A, Abnous K, Taghdisi SM (2016) A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron 75:123–128. doi: 10.1016/j.bios.2015.08.017 CrossRefGoogle Scholar
  15. 15.
    Taghdisi SM, Danesh NM, Emrani AS, Ramezani M, Abnous K (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 73:245–250. doi: 10.1016/j.bios.2015.05.065 CrossRefGoogle Scholar
  16. 16.
    Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM (2016) Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem 190:115–121. doi: 10.1016/j.foodchem.2015.05.079 CrossRefGoogle Scholar
  17. 17.
    Chang CC, Chen CY, Chuang TL, Wu TH, Wei SC, Liao H, Lin CW (2016) Aptamer-based colorimetric detection of proteins using a branched DNA cascade amplification strategy and unmodified gold nanoparticles. Biosens Bioelectron 78:200–205. doi: 10.1016/j.bios.2015.11.051 CrossRefGoogle Scholar
  18. 18.
    Emrani AS, Danesh NM, Ramezani M, Taghdisi SM, Abnous K (2016) A novel fluorescent aptasensor based on hairpin structure of complementary strand of aptamer and nanoparticles as a signal amplification approach for ultrasensitive detection of cocaine. Biosens Bioelectron 79:288–293. doi: 10.1016/j.bios.2015.12.025 CrossRefGoogle Scholar
  19. 19.
    Li X, Kao FJ, Chuang CC, He S (2010) Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and twophoton excitation. Opt Express 18(11):11335–11346. doi: 10.1364/oe.18.011335 CrossRefGoogle Scholar
  20. 20.
    Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J (2014) A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens Bioelectron 56:231–236CrossRefGoogle Scholar
  21. 21.
    Bai HY, Campo FJ, Tsai YC (2013) Sensitive electrochemical thrombin aptasensor based on gold disk microelectrode arrays. Biosens Bioelectron 42(1):17–22CrossRefGoogle Scholar
  22. 22.
    Zhou L, Wang J, Li D, Li Y (2014) An electrochemical aptasensor based on gold nanoparticles dotted graphene modified glassy carbon electrode for label-free detection of bisphenol a in milk samples. Food Chem 162:34–40CrossRefGoogle Scholar
  23. 23.
    Mokhtarzadeh A, Ezzati Nazhad Dolatabadi J, Abnous K, de la Guardia M, Ramezani M (2015) Nanomaterial-based cocaine aptasensors. Biosens Bioelectron 68:95–106. doi: 10.1016/j.bios.2014.12.052 CrossRefGoogle Scholar
  24. 24.
    He J, Liu Y, Fan M, Liu X (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59(5):1582–1586. doi: 10.1021/jf104189g CrossRefGoogle Scholar
  25. 25.
    Taghdisi SM, Danesh NM, Nameghi MA, Ramezani M, Abnous K (2016) A label-free fluorescent aptasensor for selective and sensitive detection of streptomycin in milk and blood serum. Food Chem 203:145–149. doi: 10.1016/j.foodchem.2016.02.017 CrossRefGoogle Scholar
  26. 26.
    Zhao Q, Zhang Z, Xu L, Xia T, Li N, Liu J, Fang X (2014) Exonuclease I aided enzyme-linked aptamer assay for small-molecule detection. Anal Bioanal Chem 406(12):2949–2955. doi: 10.1007/s00216-014-7705-z CrossRefGoogle Scholar
  27. 27.
    Yan Z, Gan N, Li T, Cao Y, Chen Y (2016) A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling. Biosens Bioelectron 78:51–57. doi: 10.1016/j.bios.2015.11.019 CrossRefGoogle Scholar
  28. 28.
    Zheng D, Zou R, Lou X (2012) Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR gold, and exonuclease I. Anal Chem 84(8):3554–3560. doi: 10.1021/ac300690r CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Wang X, Wang Y, Yang X (2010) Distinction of single base mismatches in duplex DNA using methylene blue as optical indicator. Analyst 135(11):2960–2964. doi: 10.1039/c0an00359j CrossRefGoogle Scholar
  30. 30.
    Lee CY, Wu KY, Su HL, Hung HY, Hsieh YZ (2013) Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens Bioelectron 39(1):133–138. doi: 10.1016/j.bios.2012.07.009 CrossRefGoogle Scholar
  31. 31.
    Huang X, Li Y, Chen Y, Gao W (2015) Combining a loop-stem aptamer sequence with methylene blue: a simple assay for thrombin detection by resonance light scattering technique. RSC Adv 5(38):30268–30274. doi: 10.1039/c4ra14729d CrossRefGoogle Scholar
  32. 32.
    Song Q, Peng M, Wang L, He D, Ouyang J (2016) A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core–shell Ag@SiO2 nanoparticles. Biosens Bioelectron 77:237–241. doi: 10.1016/j.bios.2015.09.008 CrossRefGoogle Scholar
  33. 33.
    Wu S, Zhang H, Shi Z, Duan N, Fang C, Dai S, Wang Z (2015) Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 50:597–604CrossRefGoogle Scholar
  34. 34.
    Yang C, Wang Q, Xiang Y, Yuan R, Chai Y (2014) Target-induced strand release and thionine-decorated gold nanoparticle amplification labels for sensitive electrochemical aptamer-based sensing of small molecules. Sensors Actuators B Chem 197:149–154CrossRefGoogle Scholar
  35. 35.
    Zhang B, Pan X, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Development of a method for the determination of 9 currently used cotton pesticides by gas chromatography with electron capture detection. Talanta 75(4):1055–1060. doi: 10.1016/j.talanta.2008.01.032 CrossRefGoogle Scholar
  36. 36.
    Zhang X, Mobley N, Zhang J, Zheng X, Lu L, Ragin O, Smith CJ (2010) Analysis of agricultural residues on tea using d-SPE sample preparation with GC-NCI-MS and UHPLC-MS/MS. J Agric Food Chem 58(22):11553–11560. doi: 10.1021/jf102476m CrossRefGoogle Scholar
  37. 37.
    Ferrer I, Thurman EM, Fernández-Alba AR (2005) Quantitation and accurate mass analysis of pesticides in vegetables by LC/TOF-MS. Anal Chem 77(9):2818–2825. doi: 10.1021/ac048458x CrossRefGoogle Scholar
  38. 38.
    Xu Q, Du S, Jin G, Li H, Hu XY (2011) Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Microchim Acta 173(3–4):323–329. doi: 10.1007/s00604-011-0562-y CrossRefGoogle Scholar
  39. 39.
    Wang C, Chen D, Wang Q (2016) Aptamer-based resonance light scattering for sensitive detection of acetamiprid. Anal Sci 32(7):757–762CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Seyed Mohammad Taghdisi
    • 1
    • 2
  • Noor Mohammad Danesh
    • 3
    • 4
  • Mohammad Ramezani
    • 3
  • Khalil Abnous
    • 5
    • 6
    Email author
  1. 1.Targeted Drug Delivery Research CenterMashhad University of Medical SciencesMashhadIran
  2. 2.Department of Pharmaceutical Biotechnology, School of PharmacyMashhad University of Medical SciencesMashhadIran
  3. 3.Nanotechnology Research CenterMashhad University of Medical SciencesMashhadIran
  4. 4.Research Institute of Sciences and New TechnologyMashhadIran
  5. 5.Pharmaceutical Research CenterMashhad University of Medical SciencesMashhadIran
  6. 6.Department of Medicinal Chemistry, School of PharmacyMashhad University of Medical SciencesMashhadIran

Personalised recommendations