Microchimica Acta

, Volume 184, Issue 1, pp 203–210 | Cite as

Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots

  • Yashan Wang
  • Tiancong Ma
  • Shuyue Ma
  • Yongjun Liu
  • Yaping Tian
  • Ruinan Wang
  • Yanbin Jiang
  • Dongjun HouEmail author
  • Jianlong WangEmail author
Original Paper


A rapid and sensitive aptamer-based assay is described for kanamycin, a veterinary antibiotic with neurotoxic side effects. It is based on a novel FRET pair consisting of fluorescent carbon dots and layered MoS2. This donor-acceptor pair (operated at excitation/emission wavelengths of 380/440 nm) shows fluorescence recovery efficiencies reaching 93 %. By taking advantages of aptamer-induced fluorescence quenching and recovery, kanamycin can be quantified in the of 4–25 μM concentration range, with a detection limit of 1.1 μM. The method displays good specificity and was applied to the determination of kanamycin in spiked milk where it gave recoveries ranging from 85 % to 102 %, demonstrating that the method serves as a promising tool for the rapid detection of kanamycin in milk and other animal-derived foodstuff.

Graphical Abstract

A fluorometric aptasensor was developed for the determination of kanamycin. It is based on a novel FRET pair of carbon dots and layered MoS2. The fluorescence recovery efficiency reached 93 % with a good sensitivity, specificity and recoveries in spiked milk.


Veterinary antibiotic Aptasensor Molybdenum disulfide MoS2 Exfoliation Fluorescence resonance energy transfer (FRET) Milk analysis 



This work is supported by the National Science & Technology Pillar Program of China (No. 2014BAD13B05) and the Yangling Agricultural Hi-tech Industries Demonstration Zone (2014NY-35).

Compliance with ethical standards

The author(s) declare that they have no competing interests.


  1. 1.
    Jin Y, Jang WJ, Han CH, Lee MH (2006) Development of immunoassays for the detection of kanamycin in veterinary fields. J Vet Sci 7(2):111–117CrossRefGoogle Scholar
  2. 2.
    U.S. National Library of Medicine
  3. 3.
    Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C (2011) Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 415(2):175–181CrossRefGoogle Scholar
  4. 4.
    Xing YP, Liu C, Zhou XH, Shi HC (2015) Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay. Sci Rep 5:8125CrossRefGoogle Scholar
  5. 5.
    Zhu Y, Chandra P, Song KM, Ban C, Shim YB (2012) Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens Bioelectron 36(1):29–34CrossRefGoogle Scholar
  6. 6.
    Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24(2):191–200CrossRefGoogle Scholar
  7. 7.
    Liu J, Guan Z, Lv Z, Jiang X, Yang S, Chen A (2014) Improving sensitivity of gold nanoparticle based fluorescence quenching and colorimetric aptasensor by using water resuspended gold nanoparticle. Biosens Bioelectron 52:265–270CrossRefGoogle Scholar
  8. 8.
    Wu S, Duan N, Ma X, Xia Y, Wang H, Wang Z, Zhang Q (2012) Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal Chem 84(14):6263–6270CrossRefGoogle Scholar
  9. 9.
    Tianyu H, Xu Y, Weidan N, Xingguang S (2016) Aptamer-based aggregation assay for mercury (II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183(7):2131–2137CrossRefGoogle Scholar
  10. 10.
    Wang GL, Hu XL, Wu XM, Dong YM, Li ZJ (2016) Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Microchim Acta 183(2):765–771CrossRefGoogle Scholar
  11. 11.
    Yi Z, Li XY, Gao Q, Tang LJ, Chu X (2013) Aptamer-aided target capturing with biocatalytic metal deposition: an electrochemical platform for sensitive detection of cancer cells. Analyst 138(7):2032–2037CrossRefGoogle Scholar
  12. 12.
    Tan W, Donovan MJ, Jiang J (2013) Aptamers from cell-based selection for bioanalytical applications. Chem Rev 113(4):2842–2862CrossRefGoogle Scholar
  13. 13.
    Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. TrAC Trends Anal Chem 27(2):108–117CrossRefGoogle Scholar
  14. 14.
    Chen T, Shukoor MI, Chen Y, Yuan Q, Zhu Z, Zhao Z, Basri G, Tan W (2011) Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale 3(2):546–556CrossRefGoogle Scholar
  15. 15.
    Zhang C, Yuan Y, Zhang S, Wang Y, Liu Z (2011) Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. Angew Chem Int Ed 50(30):6851–6854CrossRefGoogle Scholar
  16. 16.
    Li W, Yang X, Wang K, Tan W, Li H, Ma C (2008) FRET-based aptamer probe for rapid angiogenin detection. Talanta 75(3):770–774CrossRefGoogle Scholar
  17. 17.
    Shi L, De Paoli V, Rosenzweig N, Rosenzweig Z (2006) Synthesis and application of quantum dots FRET-based protease sensors. J Am Chem Soc 128(32):10378–10379CrossRefGoogle Scholar
  18. 18.
    Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2015) Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182(5–6):917–923CrossRefGoogle Scholar
  19. 19.
    Yu C, Li X, Zeng F, Zheng F, Wu S (2013) Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun 49(4):403–405CrossRefGoogle Scholar
  20. 20.
    Dai H, Shi Y, WangY SY, Hu J, Ni P, Li Z (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors Actuators B Chem 202:201–208CrossRefGoogle Scholar
  21. 21.
    Yang R, Jin J, Chen Y, Shao N, Kang H, Xiao Z, Tang Z, Wu Y, Zhu Z, Tan W (2008) Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J Am Chem Soc 130(26):8351–8358CrossRefGoogle Scholar
  22. 22.
    Zhu C, Zeng Z, Li H, Li F, Fan C, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135(16):5998–6001CrossRefGoogle Scholar
  23. 23.
    Ding J, Zhou Y, Li Y, Guo S, Huang X (2016) MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: a new class of bifunctional materials for batteries and electrocatalysis. Chem Mater 28(7):2074–2080CrossRefGoogle Scholar
  24. 24.
    Ge J, Ou EC, Yu RQ, Chu X (2014) A novel aptameric nanobiosensor based on the self-assembled DNA–MoS2 nanosheet architecture for biomolecule detection. J Mater Chem B 2(6):625–628CrossRefGoogle Scholar
  25. 25.
    Singh P, Gupta R, Sinha M, Kumar R, Bhalla V (2016) MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchim Acta 183(4):1501–1506CrossRefGoogle Scholar
  26. 26.
    Wang K, Wang J, Fan J, Lotya M, O’Neill A, Fox D, Feng Y, Zhang X, Jiang B, Zhao Q, Zhang H, Coleman JN, Zhang L, Zhang H (2013) Ultrafast saturable absorption of two-dimensional MoS2 nanosheets. ACS Nano 7(10):9260–9267CrossRefGoogle Scholar
  27. 27.
    Li BL, Luo HQ, Lei JL, Li NB (2014) Hemin-functionalized MoS2 nanosheets: enhanced peroxidase-like catalytic activity with a steady state in aqueous solution. RSC Adv 4(46):24256–24262CrossRefGoogle Scholar
  28. 28.
    Guo Y, Wang Z, Shao H, Jiang X (2013) Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon 52:583–589CrossRefGoogle Scholar
  29. 29.
    National Standard of China. Determination of streptomycin, dihydrostreptomycin and kanamycin residues in milk and milk powder–LC-MS-MS method. GB/T 22969–2008Google Scholar
  30. 30.
    Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419CrossRefGoogle Scholar
  31. 31.
    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10(4):1271–1275CrossRefGoogle Scholar
  32. 32.
    Beal AR, Knights JC, Liang WY (1972) Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J Phys C Solid State Phys 5(24):3540CrossRefGoogle Scholar
  33. 33.
    Cui X, Zhu L, Wu J, Hou Y, Wang P, Wang Z, Yang M (2015) A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens Bioelectron 63:506–512CrossRefGoogle Scholar
  34. 34.
    Liu C, Lu C, Tang Z, Chen X, Wang G, Sun F (2015) Aptamer-functionalized magnetic nanoparticles for simultaneous fluorometric determination of oxytetracycline and kanamycin. Microchim Acta 182(15–16):2567–2575CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Yashan Wang
    • 1
  • Tiancong Ma
    • 2
  • Shuyue Ma
    • 3
  • Yongjun Liu
    • 1
  • Yaping Tian
    • 1
  • Ruinan Wang
    • 1
  • Yanbin Jiang
    • 1
  • Dongjun Hou
    • 1
    Email author
  • Jianlong Wang
    • 3
    Email author
  1. 1.Ministry of AgricultureChina Animal Disease Control CenterBeijingChina
  2. 2.Institute of ChemistryChinese Academy of SciencesBeijingChina
  3. 3.College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina

Personalised recommendations