Advertisement

Microchimica Acta

, Volume 184, Issue 1, pp 117–125 | Cite as

Aptamer-based impedimetric determination of the human blood clotting factor IX in serum using an interdigitated electrode modified with a ZnO nanolayer

  • Ong Chong Cheen
  • Subash C. B. GopinathEmail author
  • Veeradasan Perumal
  • M. K. Md Arshad
  • Thangavel Lakshmipriya
  • Yeng Chen
  • R. Haarindraprasad
  • Balakrishnan S. Rao
  • Uda Hashim
  • Kannaiyan Pandian
Original Paper

Abstract

This article describes a sensitive impedimetric method for the determination of human blood coagulation factor IX protein (FIX) which is present in extremely low concentration in serum. An interdigitated electrode (IDE) whose surface was layered with zinc oxide was modified with two kinds of probes. One is an antibody, the other an aptamer against FIX. A comparative study between anti-FIX aptamer and anti-FIX antibody showed the aptamer to possess higher affinity for FIX. A sandwich aptamer assay was worked out by using the FIX-binding aptamer on the surface of the IDE. It has a detection limit as low as 10 pM which makes it 4 to 30-fold more sensitive than any other method reported for FIX. Moreover, to practice detection in clinical samples, FIX was detected from the human blood serum by spiking. In our perception, the sensitivity of the ZnO-modified IDE presented here makes it a promising tool for sensing clinically relevant analytes that are present in very low (sub-pM) concentrations.

Graphical Abstract

Keywords

Coagulation Hemophilia Impedance Resistance analysis Factor IX Aptamer Monoclonal antibody Clotting 

Notes

Acknowledgments

Y. Chen thanks the support from High Impact Research grants - “MoE Grant UM.C/625/1/HIR/MOE/DENT/09” and “UM-MoHE HIR UM.C/625/1/HIR/MOHE/MED/16/5”

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_2001_MOESM1_ESM.docx (714 kb)
ESM 1 (DOCX 714 kb)

References

  1. 1.
    Gopinath SCB, Balasundaresan D, Akitomi J, Mizuno H (2006) An RNA aptamer that discriminates bovine factor IX from human factor IX. J Biochem 140:667–676. doi: 10.1093/jb/mvj203 CrossRefGoogle Scholar
  2. 2.
    Gopinath SCB, Shikamoto Y, Mizuno H, Kumar PKR (2007) Snake-venom-derived factor IX-binding protein specifically blocks the gamma-carboxyglutamic acid-rich-domain-mediated membrane binding of human factors IX and X. Biochem J 405:351–357. doi: 10.1042/BJ20061737 CrossRefGoogle Scholar
  3. 3.
    Gopinath SCB (2008) Anti-coagulant aptamers. Thromb Res 122:838–847. doi: 10.1016/j.thromres.2007.10.022 CrossRefGoogle Scholar
  4. 4.
    Lowe GDO (2001) Factor IX and thrombosis. Br J Haematol 115:507–513. doi: 10.1046/j.1365-2141.2001.03186.x CrossRefGoogle Scholar
  5. 5.
    Lakshmipriya T, Fujimaki M, Gopinath SCB et al (2013) A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity. Analyst 138:2863. doi: 10.1039/c3an00298e CrossRefGoogle Scholar
  6. 6.
    Lakshmipriya T, Horiguchi Y, Nagasaki Y (2014) Co-immobilized poly(ethylene glycol)-block-polyamines promote sensitivity and restrict biofouling on gold sensor surface for detecting factor IX in human plasma. Analyst 139:3977–3985. doi: 10.1039/c4an00168k CrossRefGoogle Scholar
  7. 7.
    Busher JT (1990) Serum albumin and globulin. Clin Methods Hist Phys Lab Exam 497–499Google Scholar
  8. 8.
    Gopinath SCB, Awazu K, Fujimaki M et al (2008) Influence of nanometric holes on the sensitivity of a waveguide-mode sensor: label-free nanosensor for the analysis of RNA aptamer-ligand interactions. Anal Chem 80:6602–6609. doi: 10.1021/ac800767s CrossRefGoogle Scholar
  9. 9.
    Gopinath SCB, Awazu K, Fons P et al (2009) A sensitive multilayered structure suitable for biosensing on the BioDVD platform. Anal Chem 81:4963–4970. doi: 10.1021/ac802757z CrossRefGoogle Scholar
  10. 10.
    Fujimaki M, Nomura K, Sato K et al (2010) Detection of colored nanomaterials using evanescent field-based waveguide sensors. Opt Express 18:15732–15740. doi: 10.1364/OE.18.015732 CrossRefGoogle Scholar
  11. 11.
    Perumal V, Hashim U, Gopinath SCB et al (2015) “Spotted Nanoflowers”: gold-seeded zinc oxide nanohybrid for selective bio-capture. Sci Rep 5:12231. doi: 10.1038/srep12231 CrossRefGoogle Scholar
  12. 12.
    Balakrishnan SR, Hashim U, Gopinath SCB et al (2015) A point-of-care immunosensor for human chorionic gonadotropin in clinical urine samples using a cuneated polysilicon nanogap lab-on-chip. PLoS One 10:e0137891. doi: 10.1371/journal.pone.0137891 CrossRefGoogle Scholar
  13. 13.
    Haarindraprasad R, Hashim U, Gopinath SCB et al (2015) Low temperature annealed zinc oxide nanostructured thin film-based transducers: characterization for sensing applications. PLoS One 10:e0132755. doi: 10.1371/journal.pone.0132755 CrossRefGoogle Scholar
  14. 14.
    Gopinath SCB, Tang T, Citartan M, Chen Y (2014) Current aspects in immunosensors. Biosens Bioelectron 57:292–302. doi: 10.1016/j.bios.2014.02.029 CrossRefGoogle Scholar
  15. 15.
    Wojcik EGC, Cheung WF, Van Den Berg M et al (1998) Identification of residues in the Gla-domain of human factor IX involved in the binding to conformation specific antibodies. Biochim Biophys Acta Protein Struct Mol Enzymol 1382:91–101. doi: 10.1016/S0167-4838(97)00149-0 CrossRefGoogle Scholar
  16. 16.
    Gopinath SCB, Hayashi K, Lee J-B et al (2013) Analysis of compounds that interfere with herpes simplex virus-host receptor interactions using surface plasmon resonance. Anal Chem 85:10455–10462. doi: 10.1021/ac4025522 CrossRefGoogle Scholar
  17. 17.
    Gopinath SCB, Hayashi K, Kumar PKR (2012) Aptamer that binds to the gD protein of herpes simplex virus 1 and efficiently inhibits viral entry. J Virol 86:6732–6744. doi: 10.1128/JVI.00377-12 CrossRefGoogle Scholar
  18. 18.
    Gopinath SCB (2007) Methods developed for SELEX. Anal Bioanal Chem 387:171–182. doi: 10.1007/s00216-006-0826-2 CrossRefGoogle Scholar
  19. 19.
    Lakshmipriya T, Fujimaki M, Gopinath SCB, Awazu K (2013) Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir 29:15107–15115CrossRefGoogle Scholar
  20. 20.
    Gopinath SCB, Awazu K, Fujimaki M (2012) Waveguide-mode sensors as aptasensors. Sensors 12:2136–2151. doi: 10.3390/s120202136 CrossRefGoogle Scholar
  21. 21.
    Suenaga E, Kumar PKR (2014) An aptamer that binds efficiently to the hemagglutinins of highly pathogenic avian influenza viruses (H5N1 and H7N7) and inhibits hemagglutinin-glycan interactions. Acta Biomater 10:1314–1323. doi: 10.1016/j.actbio.2013.12.034 CrossRefGoogle Scholar
  22. 22.
    Luo Y, Xu J, Li Y et al (2015) A novel colorimetric aptasensor using cysteamine-stabilized gold nanoparticles as probe for rapid and specific detection of tetracycline in raw milk. Food Control 54:7–15. doi: 10.1016/j.foodcont.2015.01.005 CrossRefGoogle Scholar
  23. 23.
    Zhang L, Li L (2016) Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic. Microchim Acta 183:485–490. doi: 10.1007/s00604-015-1674-6 CrossRefGoogle Scholar
  24. 24.
    Sui N, Wang L, Xie F et al (2016) Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Microchim Acta 183:1563–1570. doi: 10.1007/s00604-016-1774-y CrossRefGoogle Scholar
  25. 25.
    Hao L, Zhao Q (2016) Microplate based assay for thrombin detection using an RNA aptamer as affinity ligand and cleavage of a chromogenic or a fluorogenic peptide substrate. Microchim Acta 183:1891–1898. doi: 10.1007/s00604-016-1833-4 CrossRefGoogle Scholar
  26. 26.
    Park JH, Cho YS, Kang S et al (2014) A colorimetric sandwich-type assay for sensitive thrombin detection based on enzyme-linked aptamer assay. Anal Biochem 462:10–12. doi: 10.1016/j.ab.2014.05.015 CrossRefGoogle Scholar
  27. 27.
    Van Gerwen P, Laureys W, Huyberechts G et al (1997) Nanoscaled interdigitated electrode arrays for biochemical sensors. Proc Int Solid State Sensors Actuators Conf (Transducers ’97) 2:73–80. doi: 10.1109/SENSOR.1997.635249 Google Scholar
  28. 28.
    Rana S, Page RH, McNeil CJ (2011) Impedance spectra analysis to characterize interdigitated electrodes as electrochemical sensors. Electrochim Acta 56:8559–8563. doi: 10.1016/j.electacta.2011.07.055 CrossRefGoogle Scholar
  29. 29.
    Ohno R, Ohnuki H, Wang H et al (2013) Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A. Biosens Bioelectron 40:422–426. doi: 10.1016/j.bios.2012.07.052 CrossRefGoogle Scholar
  30. 30.
    Gopinath SCB, Perumal V, Kumaresan R et al (2016) Nanogapped dielectric impedance surface for sensitive detection of Mycobacterium tuberculosis 16 kDa antigen. Microchim ActaGoogle Scholar
  31. 31.
    Rusconi CP, Scardino E, Layzer J et al (2002) RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419:90–94. doi: 10.1038/nature00963 CrossRefGoogle Scholar
  32. 32.
    Maier KE, Levy M (2016) From selection hits to clinical leads: progress in aptamer discovery. Mol Ther Methods Clin Dev 5:16014. doi: 10.1038/mtm.2016.14 CrossRefGoogle Scholar
  33. 33.
    Vavalle JP, Cohen MG (2012) The REG1 anticoagulation system: a novel actively controlled factor IX inhibitor using RNA aptamer technology for treatment of acute coronary syndrome. Futur Cardiol 8:371–382. doi: 10.2217/fca.12.5 CrossRefGoogle Scholar
  34. 34.
    Povsic TJ, Vavalle JP, Aberle LH et al (2013) A Phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: results of the RADAR trial. Eur Heart J 34:2481–2489. doi: 10.1093/eurheartj/ehs232 CrossRefGoogle Scholar
  35. 35.
    Gopinath SCB, Shikamoto Y, Mizuno H, Kumar PKR (2006) A potent anti-coagulant RNA aptamer inhibits blood coagulation by specifically blocking the extrinsic clotting pathway. Thromb Haemost 95:767–771. doi: 10.1160/Th06-01-0047 Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Ong Chong Cheen
    • 1
    • 2
  • Subash C. B. Gopinath
    • 1
    • 3
    Email author
  • Veeradasan Perumal
    • 1
    • 4
  • M. K. Md Arshad
    • 1
  • Thangavel Lakshmipriya
    • 1
  • Yeng Chen
    • 5
    • 6
  • R. Haarindraprasad
    • 1
  • Balakrishnan S. Rao
    • 1
    • 7
  • Uda Hashim
    • 1
  • Kannaiyan Pandian
    • 8
  1. 1.Institute of Nano Electronic Engineering (INEE), Universiti Malaysia PerlisKangarMalaysia
  2. 2.Faculty of Engineering TechnologyUniversiti Malaysia PerlisKangarMalaysia
  3. 3.School of Bioprocess EngineeringUniversiti Malaysia PerlisArauMalaysia
  4. 4.Centre of Innovative Nanostructure & Nanodevices (COINN)Universiti Teknologi PETRONASBandar Seri IskandarMalaysia
  5. 5.Department of Oral Biology & Craniofacial SciencesKuala LumpurMalaysia
  6. 6.Oral Cancer Research and Coordinating Center (OCRCC), Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  7. 7.Fakulti Kejuruteraan dan Alam BinaUniversiti Sains Islam Malaysia (USIM)NilaiMalaysia
  8. 8.Department of Inorganic ChemistryUniversity of MadrasChennaiIndia

Personalised recommendations