Microchimica Acta

, Volume 183, Issue 11, pp 3061–3067 | Cite as

Electrochemical strategy for ultrasensitive detection of microRNA based on MNAzyme-mediated rolling circle amplification on a gold electrode

  • Jianru Yang
  • Min Tang
  • Wei Diao
  • Wenbin Cheng
  • Ye Zhang
  • Yurong Yan
Original Paper


The authors describe an electrochemical strategy for ultrasensitive and specific detection of microRNA (miRNA). It is based on both multicomponent nucleic acid enzyme (MNAzyme) amplification and rolling circle amplification (RCA). In the presence of target miRNAs, partial enzyme A (partzyme A) and partial enzyme B (partzyme B) are assembled to form active MNAzymes. Once formed, the MNAzymes catalyze the cleavage of the hairpin substrates to liberate biotinylated fragments which hybridized with the capture probes immobilized on a gold electrode. The RCA is then initiated to form a product that binds many detection probes. Finally, the amperometric signal (best acquired at a working voltage of 0.22 V vs. Ag/AgCl) is obtained by employing the streptavidinylated alkaline phosphatase as the enzyme. This biosensor has a 1.66 fM detection limit, and a dynamic range that extends from 10 fM to 1 nM. It displays specificity down to single mismatch discrimination of target miRNAs and good reproducibility. It was successfully applied to the determination of miRNA in total RNA samples extracted from human breast adenocarcinoma MCF-7 cells.

Graphical abstract

Cascade signal amplification strategy for microRNA electrochemical detection based on multicomponent nucleic acid enzyme (MNAzyme)-mediated rolling circle amplification. MCH: 6-mercapto-1-hexanol; BSA: bovine serum albumin; dNTP: deoxy-ribonucleoside triphosphate; ST-AP: streptavidin-alkaline phosphatase; α-NP: α-naphthyl phosphate


Electrochemical biosensor Electrochemical impedance spectroscopy Differential pulse voltammetry Square wave voltammetry Alkaline phosphatase Streptavidin human breast adenocarcinoma MCF-7 cells DNA polymerase T4 DNA ligase 



This work was funded by the National Natural Science Foundation of China (81101638) and the Science and Technology Plan Project of Yu Zhong District of Chongqing (20150114).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_1958_MOESM1_ESM.doc (339 kb)
ESM 1 (DOC 339 kb)


  1. 1.
    He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531CrossRefGoogle Scholar
  2. 2.
    Lujambio A, Lowe SW (2012) The microcosmos of cancer. Nature 482:347–355CrossRefGoogle Scholar
  3. 3.
    Siegismund CS, Rohde M, Kühl U, Lassner D (2014) Multiparametric diagnostics of cardiomyopathies by microRNA signatures. Microchim Acta 181:1647–1653CrossRefGoogle Scholar
  4. 4.
    Haramati S, Chapnik E, Sztainberg Y, Eilam R, Zwang R, Gershoni N, McGlinn E, Heiser PW, Wills AM, Wirguin I, Rubin LL, Misawa H, Tabin CJ, Jr RB, Chen A, Hornstein E (2010) MiRNA malfunction causes spinal motor neuron disease. Proc Natl Acad Sci 107:13111–13116CrossRefGoogle Scholar
  5. 5.
    Esquela-Kerscher A, Slack FJ (2006) Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6:259–269CrossRefGoogle Scholar
  6. 6.
    Hammond SM (2006) MicroRNA detection comes of age. Nat Methods 3:12–13CrossRefGoogle Scholar
  7. 7.
    Liu L, Jiang S, Wang L, Zhang Z, Xie G (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly (amidoamine) dendrimer composite with gold and silver nanoclusters. Microchim Acta 182:77–84CrossRefGoogle Scholar
  8. 8.
    Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704CrossRefGoogle Scholar
  9. 9.
    Varallyay E, Burgyan J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3:190–196CrossRefGoogle Scholar
  10. 10.
    Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151:1–21CrossRefGoogle Scholar
  11. 11.
    Liu T, Chen X, Hong CY, XP X, Yang HH (2014) Label-free and ultrasensitive electrochemiluminescence detection of microRNA based on long-range self-assembled DNA nanostructures. Microchim Acta 181:731–736CrossRefGoogle Scholar
  12. 12.
    Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H, Ding S (2013) Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta 180:397–403CrossRefGoogle Scholar
  13. 13.
    Wang M, Yang Z, Guo Y, Wang X, Yin H, Ai S (2015) Visible-light induced photoelectrochemical biosensor for the detection of microRNA based on Bi2S3 nanorods and streptavidin on an ITO electrode. Microchim Acta 182:241–248CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Tang L, Yang F, Sun Z, Zhang G (2015) Highly sensitive DNA-based fluorometric mercury(II) bioassay based on graphene oxide and exonuclease III-assisted signal amplification. Microchim Acta 182:1535–1541CrossRefGoogle Scholar
  15. 15.
    Wang M, Fu Z, Li B, Zhou Y, Yin H, Ai S (2014) One-step, ultrasensitive, and electrochemical assay of microRNAs based on T7 exonuclease assisted cyclic enzymatic amplification. Anal Chem 86:5606–5610CrossRefGoogle Scholar
  16. 16.
    Zhang Y, Yan Y, Chen W, Cheng W, Li S, Ding X, Li D, Wang H, Ju H, Ding S (2015) A simple electrochemical biosensor for highly sensitive and specific detection of microRNA based on mismatched catalytic hairpin assembly. Biosens Bioelectron 68:343–349CrossRefGoogle Scholar
  17. 17.
    Zhao X, Gong L, Zhang X, Yang B, Fu T, Hu R, Tan W, Yu R (2013) Versatile DNAzyme-based amplified biosensing platforms for nucleic acid, protein, and enzyme activity detection. Anal Chem 85:3614–3620CrossRefGoogle Scholar
  18. 18.
    Freage L, Wang F, Orbach R, Willner I (2014) Multiplexed analysis of genes and of metal ions using enzyme/DNAzyme amplification machineries. Anal Chem 86:11326–11333CrossRefGoogle Scholar
  19. 19.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  20. 20.
    Xiao Y, Rowe AA, Plaxco KW (2007) Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. J Am Chem Soc 129:262–263CrossRefGoogle Scholar
  21. 21.
    Mokany E, Bone SM, Young PE, Doan TB, Todd AV (2010) MNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switches. J Am Chem Soc 132:1051–1059CrossRefGoogle Scholar
  22. 22.
    Mokany E, Tan YL, Bone SM, Fuery CJ, Todd AV (2013) MNAzyme qPCR with superior multiplexing capacity. Clin Chem 59:419–426CrossRefGoogle Scholar
  23. 23.
    Kolpashchikov DM (2007) A binary deoxyribozyme for nucleic acid analysis. Chembiochem 8:2039–2042CrossRefGoogle Scholar
  24. 24.
    Jie G, Qin Y, Meng Q, Wang J (2015) Autocatalytic amplified detection of DNA based on a CdSe quantum dot/folic acid electrochemiluminescence energy transfer system. Analyst 140:79–82CrossRefGoogle Scholar
  25. 25.
    Zagorovsky K, Chan WC (2013) A plasmonic DNAzyme strategy for point-of-care genetic detection of infectious pathogens. Angew Chem Int Ed 52:3168–3171CrossRefGoogle Scholar
  26. 26.
    Ren K, Wu J, Ju H, Yan F (2015) Target-driven triple-binder assembly of MNAzyme for amplified electrochemical immunosensing of protein biomarker. Anal Chem 87:1694–1700CrossRefGoogle Scholar
  27. 27.
    Gerasimova YV, Kolpashchikov DM (2010) Nucleic acid detection using MNAzymes. Chem Biol 2:104–106CrossRefGoogle Scholar
  28. 28.
    Xu Z, Yin H, Tian Z, Zhou Y (2014) Electrochemical immunoassays for the detection the activity of DNA methyltransferase by using the rolling circle amplification technique. Microchim Acta 181:471–477CrossRefGoogle Scholar
  29. 29.
    Chapin SC, Doyle PS (2011) Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification. Anal Chem 83:7179–7185CrossRefGoogle Scholar
  30. 30.
    Cheng W, Ding L, Chen Y, Yan F, Ju H, Yin Y (2010) A facile scanometric strategy for ultrasensitive detection of protein using aptamer-initiated rolling circle amplification. Chem Commun 46:6720–6722CrossRefGoogle Scholar
  31. 31.
    Cheng Y, Zhang X, Li Z, Jiao X, Wang Y, Zhang Y (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed 48:3268–3272CrossRefGoogle Scholar
  32. 32.
    Hofmann S, Huang Y, Paulicka P, Kappel A, Katu HA, Keller A, Meder B, Stähler CF, Gumbrecht W (2015) Double-stranded ligation assay for the rapid multiplex quantification of microRNAs. Anal Chem 87:12104–12111CrossRefGoogle Scholar
  33. 33.
    Hou T, Li W, Liu X, Li F (2015) Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: a facile, sensitive, and highly specific MicroRNA assay. Anal Chem 87:11368–11374CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory MedicineChongqing Medical UniversityChongqingChina

Personalised recommendations