Microchimica Acta

, Volume 183, Issue 10, pp 2705–2711 | Cite as

Aptasensor for ATP based on analyte-induced dissociation of ferrocene-aptamer conjugates from manganese dioxide nanosheets on a screen-printed carbon electrode

  • Dianping TangEmail author
  • Li Hou
Original Paper


The authors report on a new electrochemical aptasensing strategy for the determination of adenosine - 5’-triphosphate (ATP) at picomolar levels. First, manganese dioxide (MnO2) nanosheets with an average size of ~70 nm were synthesized via a hot-injection method on the basis of reaction between potassium permanganate and the cationic detergent cetyltrimethylammonium bromide. The resulting MnO2 nanosheets were then immobilized onto a pretreated screen-printed carbon electrode which readily binds the ferrocene-labeled ATP aptamer through the van der Waals force between the nucleobases and the basal plane of the nanoflakes. The immobilized ferrocene-aptamer conjugates activates the electrical contact with the electrode and produces a strong signal in the potentials scanned (0.0 to 1.0 V vs. Ag/AgCl). Upon addition of ATP, it will react with the aptamer and cause the dissociation of the ferrocene-aptamer from the nanosheets, this resulting in a decrease in the electrical signal. Under optimal conditions, this platform exhibits a detection limit as low as 0.32 nM of ATP. The repeatability and intermediate precision is below 10.7 % at a 10 nM concentration level. The method was applied to analyze blank fetal calf serum spiked with ATP, and the recoveries (at 3 concentration levels) ranged between 91.3 and 118 %. This detection scheme is rapid, simple, cost-effective, and does not require extensive sample preparation or multiple washing steps.

Graphic abstract

MnO2 nanosheets are used as the sensing platform for electrochemical detection of ATP based on target-induced dissociation of ferrocene-labeled aptamer.


Two-dimensional nanosheets Potential cycling Electrochemical label Square-wave voltammetry Analyte-induced dissociation Bioconjugation Transmission electron microscopy Scanning electron microscopy Raman spectroscopy 



Support by the National Natural Science Foundation of China (41176079 & 21475025), the People’s Livelihood Science and Technology Innovation Project of Chongqing City (cstc2016shmszx20001), and the Advanced Natural Science Foundation of Chongqing City (cstc2015jcyjBX0126) is gratefully acknowledged.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_1916_MOESM1_ESM.doc (697 kb)
ESM 1 (DOC 697 kb)


  1. 1.
    Aliofkhazraei M, Ali N (2012) Two-dimensional nanostructues, 1st edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19CrossRefGoogle Scholar
  3. 3.
    Pradhan D, Leung K (2008) Vertical growth of two-dimensional zinc oxide nanostructures on ITO-coated glass: Effects of deposition temperature and deposition time. J Phys Chem C 112:1357–1364CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Huang J, Yuan Q, Dong B (2014) Intercalated graphitic carbon nitride: a fascinating two-dimensional nanomaterial for an ultra-sensitive humidity nanosensor. Nanoscale 6:9250–9256CrossRefGoogle Scholar
  5. 5.
    Zhu C, Fang Y, Wen D, Dong S (2011) One-spot synthesis of functional two-dimensional graphene/SnO2 composite nanosheets as a building block for self-assembly and an enhancing nanomaterial for biosensing. J Mater Chem 21:16911–16917CrossRefGoogle Scholar
  6. 6.
    Rao C, Sood A, Subrahmanyam K, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777CrossRefGoogle Scholar
  7. 7.
    Tiwari J, Tiwari R, Kim K (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57:724–803CrossRefGoogle Scholar
  8. 8.
    Jiang H, Li C, Sun T, Ma J (2012) High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2 nanosheets core-shell nanostructures. Chem Commun 48:2606–2608CrossRefGoogle Scholar
  9. 9.
    Zhang H, Wang J, Jia Y, Ma C (2012) In-situ synthetize multi-walled carbon nanotubes@MnO2 nanoflake core-shell structured materials for supercapacitors. J Power Sources 216:508–514CrossRefGoogle Scholar
  10. 10.
    He D, Yang X, He X, Wang K, Yang X, He X, Zou Z (2015) A sensitive turn-on fluorescent probe for intracellular imaging of glutathione using single-layer MnO2 nanosheet-quenched fluorescent carbon quantum dots. Chem Commun 51:14764–14767CrossRefGoogle Scholar
  11. 11.
    Wang Y, Jiang K, Zhu J, Zhang L, Liu H (2015) A FRET-based carbon dot-MnO2 nanosheet architecture for glutathione sensing in human whole blood samples. Chem Commun 51:12748–12751CrossRefGoogle Scholar
  12. 12.
    Jiang Y, Ling X, Jiao Z, Li L, Ma Q, Wu M, Chu Y, Zhao B (2015) Flexible of multiwalled carbon nanotube/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochim Acta 153:246–253CrossRefGoogle Scholar
  13. 13.
    Wang H, Zhang J, Huang X, Zhang X, Xie J, Pan B, Xie Y (2015) Half-metallicity in single-layered manganese dioxide nanosheets by defect engineering. Angew Chem Int Ed 54:1195–1199CrossRefGoogle Scholar
  14. 14.
    Liu Y, Miao X, Fang J, Zhang X, Chen S, Li W, Feng W, Chen Y, Wang W, Zhang Y (2016) Layered-MnO2 nanosheets grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor. ACS Appl Mater Interfaces 8:5251–5256CrossRefGoogle Scholar
  15. 15.
    Wei Z, Zhao T, Zhu X, Tan P (2016) MnO2-x nanosheets on stainless stell felt as a carbon- and binder-free cathode for non-aqueous lithium-oxygen batteries. J Power Sources 306:724–732CrossRefGoogle Scholar
  16. 16.
    Chen Y, Qin W, Wang J, Chen B (2016) Fabrication and electrochemical performance of nanoflake MnO2@carbon fiber coaxial nanocables for supercapacitors. J Appl Electrochem 46:241–249CrossRefGoogle Scholar
  17. 17.
    Alfaruqi M, Gim J, Kim S, Song J, Pham D, Jo J, Xiu Z, Mathew V, Kim J (2015) A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem Commun 60:121–125CrossRefGoogle Scholar
  18. 18.
    Lai W, Wei Q, Xu M, Zhuang J, Tang D (2016) Enzyme-controlled dissolution of MnO2 nanoflakes with enzyme cascade amplification for colorimetric immunoassay. Biosens Bioelectron. doi: 10.1016/j.bios.2015.12.035 Google Scholar
  19. 19.
    He D, He X, Wang K, Yang X, Yang X, Li X, Zou Z (2014) Nanometer-sized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. Chem Commun 50:11049–11052CrossRefGoogle Scholar
  20. 20.
    Wang C, Zhai W, Wang Y, Yu P, Mao L (2015) MnO2 nanosheets based fluorescent sensing platform with organic dyes as a probe with excellent analytical properties. Analyst 140:4021–4029CrossRefGoogle Scholar
  21. 21.
    Wang G, Hu X, Wu X, Dong Y, Li Z (2016) Fluorescent aptamer-based assay for thrombin with large signal amplification using peroxidase mimetics. Microchim Acta 183:765–771CrossRefGoogle Scholar
  22. 22.
    Bamrungsap S, Treetong A, Apiwat C, Wuttikhun T, Dharakul T (2016) SERS-fluorescence dual mode nanotags for cervical cancer detection using aptamers conjugated to gold-silver nanorods. Microchim Acta 183:249–256CrossRefGoogle Scholar
  23. 23.
    Qiu H, Liu Z, Huang Z, Chen M, Cai X, Wang S, Lin X (2015) Aptamer based turn-off fluorescent ATP assay using DNA concatamers. Microchim Acta 182:2387–2393CrossRefGoogle Scholar
  24. 24.
    He Y, Liao L, Xu C, Wu R, Li S, Yang Y (2015) Determination of ATP by resonance light scattering using a binuclear uranyl complex and aptamer modified gold nanoparticles as optical probes. Microchim Acta 182:419–426CrossRefGoogle Scholar
  25. 25.
    Tian J, Wang Y, Chen S, Jiang Y, Zhao Y, Zhao S (2013) Mass-amplifying quantum dots in a fluorescence polarization-based aptasensor for ATP. Microchim Acta 180:203–209CrossRefGoogle Scholar
  26. 26.
    Ma K, Wang H, Li H, Wang S, Li X, Xu B, Tian W (2016) A label-free aptasensor for turn-on fluorescent detection of ATP based on AIE-active probe and water-soluble carbon nanotubes. Sensors Actuators B 230:556–558CrossRefGoogle Scholar
  27. 27.
    Zhou Q, Lin Y, Wei Q, Chen G, Tang D (2016) In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags. Talanta 146:23–28CrossRefGoogle Scholar
  28. 28.
    Ma J, Yin B, Ye B (2016) A versatile proximity-dependent probe based on light-up DNA-scaffolded silver nanoclusters. Analyst 141:1301–1306CrossRefGoogle Scholar
  29. 29.
    Hu T, Wen W, Zhang X, Wang S (2016) Nicking endonuclease-assisted recycling of target-aptamer complex for sensitive electrochemical detection of adenosine triphosphate. Analyst 141:1506–1511CrossRefGoogle Scholar
  30. 30.
    Song Q, Peng M, Wang L, He D, Ouyang J (2016) A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core-shell Ag@SiO2 nanoparticles. Biosens Bioelectron 77:237–241CrossRefGoogle Scholar
  31. 31.
    Wei C, Yu L, Cui C, Lin J, Wei C, Mathews N, Huo F, Sritharan T, Xu Z (2014) Ultrathin MnO2 nanoflakes as effecient catalysts for oxygen reduction reaction. Chem Commun 50:7885–7888CrossRefGoogle Scholar
  32. 32.
    Tang D, Yuan R, Chai Y (2008) Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Anal Chem 80:1582–1588CrossRefGoogle Scholar
  33. 33.
    Chen D, Ding D, Li X, Waller G, Xiong X, El-Sayed M, Liu M (2015) Probing the charge storage mechanism of a pseudocapacitive MnO2 electrode using in operando Raman spectroscopy. Chem Mater 27:6608–6619CrossRefGoogle Scholar
  34. 34.
    Cheng S, Yang L, Chen D, Ji X, Jiang Z, Ding D, Liu M (2014) Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probes by in operado Raman spectroscopy. Nano Energy 9:161–167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Environmental Materials & Remediation TechnologiesChongqing University of Arts and SciencesChongqingPeople’s Republic of China
  2. 2.MOE Key Laboratory of Analysis and Detection for Food Safety, Institute of Nanomedicine and Nanobiosensing, Department of ChemistryFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations