Microchimica Acta

, Volume 183, Issue 7, pp 2085–2109 | Cite as

Micro- and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015)

  • Mariusz Barczak
  • Colette McDonagh
  • Dorota WencelEmail author
Review Article


This review (with 172 references) highlights the progress made in the past 10 years in silica sol-gel-based materials for use in optical chemical sensing. Following an introduction, the processes leading to the sol-gel-based and ormosil materials, their printability and methods for characterisation are discussed. Then various classes of optical sensors, with a focus on sensors for pH values, oxygen, carbon dioxide, ammonia (also in dissolved form), and heavy metal ions are described. A further section covers nanoparticle-based optical sensors mainly for use in intracellular sensing of the above species. Recent developments in this area are also emphasised and future trends discussed.

Graphical abstract

This review highlights the versatility and tailorability of silica sol-gel materials for use in optical sensor applications including oxygen, pH, carbon dioxide, ammonia and heavy metal ions detection. Developments such as nanoparticle-based sensors for use in intracellular sensing are also discussed.


Sol-gel process Ormosils Oxygen pH Carbon dioxide Ammonia Heavy metal ions Optical sensor Nanoparticles Intracellular sensing 



The authors gratefully acknowledge Enterprise Ireland and the European Union (European Regional Development Fund (ERDF) 2014–2020 Programme) for financial support (project number IP/2014/0300) and Science Foundation Ireland (SFI) under Grant Number 14/IFB/2704.

Compliance with ethical standards

This chapter does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Cammann K; Guibault EA; Hall H; Kellner R, Wolfbeis, OS (1996) The Cambridge definition of chemical sensors. in: Proceedings of the Cambridge workshop on chemical sensors and biosensors. Cambridge University Press, New YorkGoogle Scholar
  2. 2.
    Wolfbeis OS (2004) Optical sensor technology until the year 2000: an historical overview. In Narayanaswamy R, and Wolfbeis OS (Eds) optical sensors: industrial, environmental and diagnostic applications. Springer, Berlin, pp. 1–34. ISBN is 3-540-40888-X.Google Scholar
  3. 3.
    Leung CKY, Wan KT, Inaudi D, Bao X, Habel W, Zhou Z, Ou J, Ghandehari M, Wu HC, Imai M (2015) Review: optical fiber sensors for civil engineering applications. Mater Struct 48:871–906. doi:10.1617/s11527–013–0201-7Google Scholar
  4. 4.
    O’Keeffe, S, McCarthy D, Woulfe P, Grattan MWD, Hounsell AR, Sporea D, Mihai L, Vata I, Leen G, Lewis E (2015) A review of recent advances in optical fibre sensors for in vivo dosimetry during radiotherapy. Br J Radiol 88:20140702. doi:10.1259/bjr.20140702Google Scholar
  5. 5.
    Alwis L, Sun T, Grattan KTV (2013) Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement 46:4052–4074. doi: 10.1016/j.measurement.2013.07.030 CrossRefGoogle Scholar
  6. 6.
    Askim JR, Mahmoudi M, Suslick KS (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 42:8649–8682. doi: 10.1039/c3cs60179j CrossRefGoogle Scholar
  7. 7.
    McDonagh C, Bowe P, Mongey K, MacCraith BD (2002) Characterisation of porosity and sensor response times of sol-gel-derived thin films for oxygen sensor applications. J Non-Cryst Solids 306:138–148. doi: 10.1016/S0022-3093(02)01154-7 CrossRefGoogle Scholar
  8. 8.
    Echeverria JC, Estella J, Barberia V, Musgo J, Garrido JJ (2010) Synthesis and characterization of ultramicroporous silica xerogels. J Non-Cryst Solids 356:378–382. doi: 10.1016/j.jnoncrysol.2009.11.044 CrossRefGoogle Scholar
  9. 9.
    Wencel D, Barczak M, Borowski P, McDonagh C (2012) The development and characterisation of novel hybrid sol-gel-derived films for optical pH sensing. J Mat Chem 22:11720–11729. doi: 10.1039/c2jm31240a CrossRefGoogle Scholar
  10. 10.
    Sil D, Roy RD, Jana S, Mukherjee R, Bhadra SK, Biswas PK (2011) Patterning of sol gel thin films by capillary force assisted soft lithographic technique. J Sol-Gel Sci Technol 59:117–127. doi: 10.1007/s10971-011-2469-9 CrossRefGoogle Scholar
  11. 11.
    Mikkelsen MB, Marie R, Hansen JH, Wencel D, McDonagh C, Nielsen HO, Kristensen A (2011) Controlled deposition of sol-gel sensor material using hemiwicking. J Micromech Microeng 21:115008. doi: 10.1088/0960-1317/21/11/115008 CrossRefGoogle Scholar
  12. 12.
    McDonagh C, Burke CS, MacCraith BD (2008) Optical chemical sensors. Chem Rev 108:400–422. doi: 10.1021/cr068102g CrossRefGoogle Scholar
  13. 13.
    Wang X, Wolfbeis OS (2013) Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem 85:487–508. doi: 10.1021/ac303159b CrossRefGoogle Scholar
  14. 14.
    Orellana G, Haigh D (2008) New trends in fiber-optic chemical and biological sensors. Curr Anal Chem 4:273–295. doi: 10.2174/157341108785914871 CrossRefGoogle Scholar
  15. 15.
    Wencel D, McDonagh C (2013) Optical Chemical Sensors: A View Back. In: Cusano A, Arregui FJ, Giordano M and Cutolo A (Eds) Optochemical Nanosensors CRC Press. Taylor & Francis Group, Boca Raton, USA, pp. 51–96Google Scholar
  16. 16.
    Baldini F, Chester AN, Homola J, Martellucci S (2006) Optical chemical sensors. Proceedings of the NATO advanced study institute on optical chemical sensors, Chapter 6. Springer, NetherlandsGoogle Scholar
  17. 17.
    Wolfbeis O (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669. doi: 10.1039/b501536g CrossRefGoogle Scholar
  18. 18.
    Jeronimo PCA, Araujo AN, Montenegro MCBSM (2007) Optical sensors and biosensors based on sol-gel films. Talanta 72:13–27. doi: 10.1016/j.talanta.2006.09.029 CrossRefGoogle Scholar
  19. 19.
    Mujahid A, Lieberzeit PA, Dickert FL (2010) Chemical sensors based on molecularly imprinted sol-gel materials. Materials 3:2196–2217. doi: 10.3390/ma3042196 CrossRefGoogle Scholar
  20. 20.
    Tran-Thi T, Dagnelie R, Crunairez S, Nicole L (2011) Optical chemical sensors based on hybrid organic-inorganic sol-gel nanoreactors. Chem Soc Rev 40:621–639. doi: 10.1039/c0cs00021c CrossRefGoogle Scholar
  21. 21.
    Melde BJ, Johnson BJ, Charles PT (2008) Mesoporous silicate materials in sensing. Sensors 8:5202–5228. doi: 10.3390/s8085202 CrossRefGoogle Scholar
  22. 22.
    Qazi HH, bin Mohammad AB, Akram M (2012) Recent progress in optical chemical sensors. Sensors 12:16,522–16,556. doi:  10.3390/s121216522
  23. 23.
    Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72. doi: 10.1021/cr00099a003 CrossRefGoogle Scholar
  24. 24.
    Ciriminna R, Fidalgo A, Pandarus V, Beland F, Ilharco LM, Pagliaro M (2013) The sol-gel route to advanced silica-based materials and recent applications. Chem Rev 113:6592–6620. doi: 10.1021/cr300399c CrossRefGoogle Scholar
  25. 25.
    Tang Y, Tao Z, Bright FV (2007) Sol hydrolysis and condensation reaction time influence the sensitivity of class II xerogel-based sensing materials. J So-Gel Sci Technol 42:127–133CrossRefGoogle Scholar
  26. 26.
    Wright JD, Sommerdijk N (2000) Sol-Gel Materials: Chemistry and Applications. CRC Press, Boca RatonGoogle Scholar
  27. 27.
    Dabrowski A, Barczak M (2007) Bridged polysilsesquioxanes as a promising class of adsorbents. A concise review. Croat Chem Acta 80:367–380Google Scholar
  28. 28.
    Mackenzie JD, Bescher EP (1998) Structures, properties and potential applications of Ormosils. J Sol-Gel Sci Technol 13:371–377. doi: 10.1023/A:1008600723220 CrossRefGoogle Scholar
  29. 29.
    Schmidt H (1985) New type of non-crystalline solids between inorganic and organic materials. J Non-Cryst Solids 73:681–669. doi: 10.1016/0022-3093(85)90388-6 CrossRefGoogle Scholar
  30. 30.
    Lintner B, Arfsten N, Dislich H, Schmidt H, Philipp G, Seiferling B (1988) A 1st look at the optical-properties of ormosils. J Non-Cryst Solids 100:378–382. doi: 10.1016/0022-3093(88)90049-X CrossRefGoogle Scholar
  31. 31.
    Schmidt H (1989) Organic Modification of Glass Structure - New Glasses Or New Polymers. J Non-Cryst Solids 112:419–423. doi: 10.1016/0022-3093(89)90565-6 CrossRefGoogle Scholar
  32. 32.
    Schubert U (1996) New materials by sol-gel processing: Design at the molecular level. J Chem Soc Dalton Trans 16:3343–3348. doi: 10.1039/dt9960003343 CrossRefGoogle Scholar
  33. 33.
    Caldara M, Colleoni C, Guido E, Re V, Rosace G (2016) Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating. Sensors Actuators B Chem 222:213–220. doi: 10.1016/j.snb.2015.08.073 CrossRefGoogle Scholar
  34. 34.
    Higgins C, Wencel D, Burke CS, MacCraith BD, McDonagh C (2008) Novel hybrid optical sensor materials for in-breath O2 analysis. Analyst 133:241–247. doi: 10.1039/b716197b CrossRefGoogle Scholar
  35. 35.
    Tao ZY, Tehan EC, Tang Y, Bright FV (2006) Stable sensors with tunable sensitivities based on class II xerogels. Anal Chem 78:1939–1945. doi: 10.1021/ac051657b CrossRefGoogle Scholar
  36. 36.
    Schyrr B, Pasche S, Scolan E, Ischer R, Ferrario D, Porchet J, Voirin G (2014) Development of a polymer optical fiber pH sensor for on-body monitoring application. Sensors Actuators B Chem 194:238–248. doi: 10.1016/j.snb.2013.12.032 CrossRefGoogle Scholar
  37. 37.
    Shea K, Loy D (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic-inorganic materials. Chem Mater 13:3306–3319. doi: 10.1021/cm011074s CrossRefGoogle Scholar
  38. 38.
    Shea KJ, Moreau J, Loy DA, Corriu RJP Boury (2004) Bridged polysilsesquioxanes. molecular-engineering nanostructured hybrid organic-inorganic materials. In: Gomez-Romero, P, Sanchez, C (Eds) Functional hybrid materials. Wiley-VCH Verlag GmbH & Co. KGaA: Weinhem pp. 50–85.Google Scholar
  39. 39.
    Lobnik A, Spela KU, Turel M, Francic N (2011) Sol-gel based optical chemical sensors 8073:80730 V. doi: 10.1117/12.886819
  40. 40.
    Lin J, Brown C (1997) Sol-gel glass as a matrix for chemical and biochemical sensing. TrAC Trends Anal Chem 16:200–211. doi: 10.1016/S0165-9936(97)00021-6 CrossRefGoogle Scholar
  41. 41.
    Wencel D (2008) Sol-gel-derived optical oxygen, pH and dissolved carbon dioxide sensors. Dublin City University, DissertationGoogle Scholar
  42. 42.
    Orsi G, De Maria C, Montemurro F, Chauhan VM, Aylott JW, Vozzi G (2015) Combining Inkjet printing and sol-gel chemistry for making pH-sensitive surfaces. Curr Top Med Chem 15:271–278CrossRefGoogle Scholar
  43. 43.
    Cho EJ, Bright FV (2002) Pin-printed chemical sensor arrays for simultaneous multianalyte quantification. Anal Chem 74:1462–1466. doi: 10.1021/ac010907v CrossRefGoogle Scholar
  44. 44.
    Cho EJ, Bright FV (2002) Integrated chemical sensor array platform based on a light emitting diode, xerogel-derived sensor elements, and high-speed pin printing. Anal Chim Acta 470:101–110. doi: 10.1016/S0003-2670(02)00303-3 CrossRefGoogle Scholar
  45. 45.
    Daivasagaya DS, Yao L, Yung KY, Hajj-Hassan M, Cheung MC, Chodavarapu VP, Bright FV (2011) Contact CMOS imaging of gaseous oxygen sensor array. Sensors Actuators B Chem 157:408–416. doi: 10.1016/j.snb.2011.04.074 CrossRefGoogle Scholar
  46. 46.
    Tang Y, Tao ZY, Bukowski RM, Tehan EC, Karri S, Titus AH, Bright FV (2006) Tailored xerogel-based sensor arrays and artificial neural networks yield improved O2 detection accuracy and precision. Analyst 131:1129–1136. doi: 10.1039/b604214g CrossRefGoogle Scholar
  47. 47.
    Schottner G (2001) Hybrid sol-gel-derived polymers: Applications of multifunctional materials. Chem Mater 13:3422–3435. doi: 10.1021/cm011060m CrossRefGoogle Scholar
  48. 48.
    Sakka S (2004) Handbook of sol-gel science and technology: processing, characterization and application, vol II. Kluwer, Dordrecht, GermanyGoogle Scholar
  49. 49.
    Levy D (2015) Zayat M The Sol-Gel Handbook - Synthesis, Characterization, and Applications: Synthesis, Characterization and Applications, vol II. Wiley-VCH Verlag GmbH & Co. KGaA, Weinhem, GermanyGoogle Scholar
  50. 50.
    Innocenzi P (2003) Infrared spectroscopy of sol-gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319. doi: 10.1016/S0022-3093(02)01637-X CrossRefGoogle Scholar
  51. 51.
    Barczak M, Borowski P, Dabrowski A (2009) Structure-adsorption properties of ethylene-bridged polysilsesquioxanes and polysiloxanes functionalized with different groups. Colloids Surf A Physicochem Eng Asp 347:114–120. doi: 10.1016/j.colsurfa.2009.01.016 CrossRefGoogle Scholar
  52. 52.
    Dabrowski A, Barczak M, Stolyarchuk N, Melnyk I, Zub Y (2005) Bridged polysilsesquioxane xerogels functionalizated by amine- and thiol- groups: Synthesis, structure, adsorption properties. Adsorption 11:501–517. doi: 10.1007/s10450-005-5609-0 CrossRefGoogle Scholar
  53. 53.
    Guglielmi M, Kickelbick G, Martucci A (2014) Sol-Gel Nanocomposites. Springer, New York, USACrossRefGoogle Scholar
  54. 54.
    Levy D, Reisfeld R, Avnir D (1984) Fluorescence of europium(III) trapped in silica-gel glass as a probe for cation binding and for changes in cage symmetry during gel dehydration. Chem Phys Lett 109:593–597. doi: 10.1016/0009-2614(84)85431-7 CrossRefGoogle Scholar
  55. 55.
    Avnir D, Levy D, Reifeld R (1984) The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G. J Phys Chem 88:5956–5959. doi: 10.1021/j150668a042 CrossRefGoogle Scholar
  56. 56.
    Badini GE, Grattan KTV, Palmer AW, Tseung ACC (1989) Development of pH-sensitive substrates for optical sensor applications. Springer Proc in Physics 44, 436–442-Springer, Berlin, HeidelbergGoogle Scholar
  57. 57.
    MacCraith B, Ruddy V, Potter C, Kelly B, McGlip J (1991) Optical wave-guide sensor using evanescent wave excitation of fluorescent dye in sol-gel glass. Electron Lett 27:1247–1248. doi: 10.1049/el:19910781 CrossRefGoogle Scholar
  58. 58.
    Ding J, Shahriari M, Sigel G (1991) Fiber optic pH sensors prepared by sol-gel immobilization technique. Electron Lett 27:1560–1562. doi: 10.1049/el:19910978 CrossRefGoogle Scholar
  59. 59.
    Lev O, Tsionsky M, Rabinovich L, Glezer V, Sampath S, Pankratov I, Gun J (1995) Organically modified sol-gel sensors. Anal Chem 67:A22–A30. doi: 10.1021/ac00097a001 CrossRefGoogle Scholar
  60. 60.
    Shahriari M, Ding J (1994) Active silica-gel films for hydrogen-sulfide optical sensor application. Opt Lett 19:1085–1087. doi: 10.1364/OL.19.001085 CrossRefGoogle Scholar
  61. 61.
    Morales-Bahnik A, Czolk R, Ache H (1994) An optochemical ammonia sensor-based on immobilized metalloporphyrins. Sensors Actuators B Chem 19:493–496. doi: 10.1016/0925-4005(93)01054-8 CrossRefGoogle Scholar
  62. 62.
    Mills A (2005) Oxygen indicators and intelligent inks for packaging food. Chem Soc Rev 34:1003–1011. doi: 10.1039/b503997p CrossRefGoogle Scholar
  63. 63.
    Wang X, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43:3666–3761. doi: 10.1039/c4cs00039k CrossRefGoogle Scholar
  64. 64.
    Staal M, Borisov SM, Rickelt LF, Klimant I, Kuhl M (2011) Ultrabright planar optodes for luminescence life-time based microscopic imaging of O-2 dynamics in biofilms. J Microbiol Methods 85:67–74. doi: 10.1016/j.mimet.2011.01.021 CrossRefGoogle Scholar
  65. 65.
    Tang Y, Tehan EC, Tao ZY, Bright FV (2003) Sol-gel-derived sensor materials that yield linear calibration plots, high sensitivity, and long-term stability. Anal Chem 75:2407–2413. doi: 10.1021/ac030087h CrossRefGoogle Scholar
  66. 66.
    Burke CS, Moore JP, Wencel D, MacCraith BD (2008) Development of a Compact Optical Sensor for Real-Time, Breath-by-Breath Detection of Oxygen. J Breath Res 2:037012. doi: 10.1088/1752-7155/2/3/037012 CrossRefGoogle Scholar
  67. 67.
    Burke CS, Moore JP, Wencel D, McEvoy AK, MacCraith BD (2008) Breath-by-breath measurement of oxygen using a compact optical sensor. J Biomed Opt 13:014027. doi: 10.1117/1.2870092 CrossRefGoogle Scholar
  68. 68.
    König B, Kohls O, Holst G, Glud R, Kuhl M (2005) Fabrication and test of sol-gel based planar oxygen optodes for use in aquatic sediments. Mar Chem 97:262–276. doi: 10.1016/j.marchem.2005.05.003 CrossRefGoogle Scholar
  69. 69.
    Palmeira J, Lopes L, Silva AJ, Jorge PAS, Oliva A (2010) Optimization of Ormosil glasses for luminescence based dissolved oxygen sensors In: Hussain, NS; Santos, JD (Eds). Glass Science and its Applications. doi:  10.4028/ pp1–11
  70. 70.
    Basu BJ, Kamble J (2009) Studies on the oxygen sensitivity and microstructure of sol-gel based organic-inorganic hybrid coatings doped with platinum porphyrin dye. J Sol-Gel Sci Technol 52:24–30. doi: 10.1007/s10971-009-1996-0 CrossRefGoogle Scholar
  71. 71.
    Pang H, Kwok N, Chow LM, Yeung C, Wong K, Chen X, Wang X (2007) ORMOSIL oxygen sensors on polystyrene microplate for dissolved oxygen measurement. Sensors Actuators B Chem 123:120–126. doi: 10.1016/j.snb.2006.07.035 CrossRefGoogle Scholar
  72. 72.
    Mills A, Tommons C, Bailey RT, Crilly P, Tedford MC (2011) Thin-film oxygen sensors using a luminescent polynuclear gold(I) complex. Anal Chim Acta 702:269–273. doi: 10.1016/j.aca.2011.06.059 CrossRefGoogle Scholar
  73. 73.
    Bukowski RM, Ciriminna R, Pagliaro M, Bright FV (2005) High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)3]2+. Anal Chem 77:2670–2672. doi: 10.1021/ac048199b CrossRefGoogle Scholar
  74. 74.
    Ciriminna R, Pagliaro M (2009) Organofluoro-silica xerogels as high-performance optical oxygen sensors. Analyst 134:1531–1535. doi: 10.1039/b819417c CrossRefGoogle Scholar
  75. 75.
    Estella J, Wencel D, Moore JP, Sourdaine M, McDonagh C (2010) Fabrication and performance evaluation of highly sensitive hybrid sol-gel-derived oxygen sensor films based on a fluorinated precursor. Anal Chim Acta 666:83–90. doi: 10.1016/j.aca.2010.03.053 CrossRefGoogle Scholar
  76. 76.
    Chu C, Lo Y (2007) High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes. Sensors Actuators B Chem 124:376–382. doi: 10.1016/j.snb.2006.12.049 CrossRefGoogle Scholar
  77. 77.
    Zhao Y, Ye T, Chen H, Huang D, Zhou T, He C, Chen X (2011) A dissolved oxygen sensor based on composite fluorinated xerogel doped with platinum porphyrin dye. Luminescence 26:29–34. doi: 10.1002/bio.1182 CrossRefGoogle Scholar
  78. 78.
    Tripathi VS, Lakshminarayana G, Nogami M (2010) Optical oxygen sensors based on platinum porphyrin dyes encapsulated in Ormosils. Sensors Actuators B Chem 147:741–747. doi: 10.1016/j.snb.2010.04.020 CrossRefGoogle Scholar
  79. 79.
    Chu C, Sung T, Lo Y (2013) Enhanced optical oxygen sensing property based on Pt(II) complex and metal-coated silica nanoparticles embedded in sol-gel matrix. Sensors Actuators B Chem 185:287–292. doi: 10.1016/j.snb.2013.05.011 CrossRefGoogle Scholar
  80. 80.
    Chu C, Lo Y, Sung T (2010) Enhanced oxygen sensing properties of Pt(II) complex and dye entrapped core-shell silica nanoparticles embedded in sol-gel matrix. Talanta 82:1044–1051. doi: 10.1016/j.talanta.2010.06.020 CrossRefGoogle Scholar
  81. 81.
    Chu C, Lo Y (2010) Optical fiber dissolved oxygen sensor based on Pt(II) complex and core-shell silica nanoparticles incorporated with sol-gel matrix. Sensors Actuators B Chem 151:83–89. doi: 10.1016/j.snb.2010.09.044 CrossRefGoogle Scholar
  82. 82.
    Zhang H, Li B, Lei B, Li W (2008) Oxygen-sensing materials based on [Ru(Bpy)3]2+ covalently grafted MSU-3 mesoporous molecular sieves. J Lumin 128:1331–1338. doi: 10.1016/j.jlumin.2007.12.043 CrossRefGoogle Scholar
  83. 83.
    Wu X, Song L, Li B, Liu Y (2010) Synthesis, characterization, and oxygen sensing properties of Ru(II) complex covalently grafted to mesoporous MCM-41. J Lumin 130:374–379. doi: 10.1016/j.jlumin.2009.09.023 CrossRefGoogle Scholar
  84. 84.
    Mills A, Graham A, O’Rourke C (2014) A novel, titania sol-gel derived film for luminescence-based oxygen sensing. Sensors Actuators B Chem 190:907–912. doi:  10.1016/j.snb.2013.08.097
  85. 85.
    Wencel D, Abel T, McDonagh C (2014) Optical Chemical pH sensors. Anal Chem 86:15–29. doi: 10.1021/ac4035168 CrossRefGoogle Scholar
  86. 86.
    Shamsipur M, Abbasitabar F, Zare-Shahabadi V, Akhond M (2008) Broad-range optical pH sensor based on binary mixed-indicator doped sol-gel film and application of artificial neural network. Anal Lett 41:3113–3123. doi: 10.1080/00032710802463071 CrossRefGoogle Scholar
  87. 87.
    Wencel D, MacCraith BD, McDonagh C (2009) High performance optical ratiometric sol-gel-based pH sensor. Sensors Actuators B Chem 139:208–213. doi: 10.1016/j.snb.2008.12.066 CrossRefGoogle Scholar
  88. 88.
    Samadi-Maybodi A, Rezaei V, Rastegarzadeh S (2015) Sol-gel based optical sensor for determination of Fe (II): A novel probe for iron speciation. Spectrochim Acta A 136:832–837. doi: 10.1016/j.saa.2014.09.101 CrossRefGoogle Scholar
  89. 89.
    Mills A (2009) Optical sensors for carbon dioxide and their applications. In: Baraton M (ed) Sensors for Environment. Health and Security. Springer, Dordrecht, pp. 347–370Google Scholar
  90. 90.
    Puligundla P, Jung J, Ko S (2012) Carbon dioxide sensors for intelligent food packaging applications. Food Control 25:328–333. doi: 10.1016/j.foodcont.2011.10.043 CrossRefGoogle Scholar
  91. 91.
    Dong S, Luo M, Peng G, Cheng W (2008) Broad range pH sensor based on sol-gel entrapped indicators on fibre optic. Sensors Actuators B Chem 129:94–98. doi: 10.1016/j.snb.2007.07.078 CrossRefGoogle Scholar
  92. 92.
    Yari A, Dinarvand M (2011) Sol-gel film doped with bromopyrogallol red as a highly sensitive sensing element for a new pH optical sensor. JICS 8:1091–1097CrossRefGoogle Scholar
  93. 93.
    Chen X, Gu Z (2013) Absorption-type optical pH sensitive film based on immobilized purple cabbage pigment. Sensors Actuators B Chem 178:207–211. doi: 10.1016/j.snb.2012.12.094 CrossRefGoogle Scholar
  94. 94.
    Carmona N, Garcia-Heras M, Herrero E, Kromka K, Faber J, Villegas MA (2007) Improvement of glassy sol-gel sensors for preventive conservation of historical materials against acidity. Boletin De La Sociedad Espanola De Ceramica Y Vidrio 46:213–217CrossRefGoogle Scholar
  95. 95.
    Pena-Poza J, Conde JF, Agua F, Garcia-Heras M, Villegas MA (2013) Application of sol-gel based sensors to environmental monitoring of Maumejean stained glass windows housed in two different buildings at downtown Madrid. Boletin De La Sociedad Espanola De Ceramica Y Vidrio 52:268–276. doi: 10.3989/cyv.332013 CrossRefGoogle Scholar
  96. 96.
    El-Ashgar NM, El-Basioni AI, El-Nahhal IM, Zourob SM, El-Agez TM, Taya SA (2012) Sol-Gel thin films immobilized with bromocresol purple pH-sensitive indicator in presence of surfactants. ISRN Analytical Chemistry. Article ID 604389. doi: 10.5402/2012/604389
  97. 97.
    El-Nahhal IM, Livage J, Zourab SM, Kodeh FS, Al swearky A (2015) Entrapment of phenol red (PR) pH indicator into sol-gel matrix in presence of some surfactants. J Sol-Gel Sci Technol 75:313–322. doi: 10.1007/s10971-015-3702-8 CrossRefGoogle Scholar
  98. 98.
    Collinson MM (1998) Analytical applications of organically modified silicates. Mikrochim Acta 129:149–165. doi: 10.1007/BF01244737 CrossRefGoogle Scholar
  99. 99.
    Butler TM, MacCraith BD, McDonagh C (1998) Leaching in sol-gel-derived silica films for optical pH sensing. J Non-Cryst Solids 224:249–258. doi: 10.1016/S0022-3093(97)00481-X CrossRefGoogle Scholar
  100. 100.
    Makote R, Collinson MM (1999) Organically modified silicate films for stable pH sensors. Anal Chim Acta 394:195–200. doi: 10.1016/S0003-2670(99)00305-0 CrossRefGoogle Scholar
  101. 101.
    Kowada Y, Ozeki T, Minami T (2005) Preparation of silica-gel film with pH indicators by the sol-gel method. J Sol-Gel Sci Technol 33:175–185. doi: 10.1007/s10971-005-5612-7 CrossRefGoogle Scholar
  102. 102.
    Jeon D, Yoo WJ, Seo JK, Shin SH, Han K, Kim SG, Park J, Lee B (2013) Fiber-optic pH sensor based on sol-gel film immobilized with neutral red. Opt Rev 20:209–213. doi: 10.1007/s10043-013-0037-y CrossRefGoogle Scholar
  103. 103.
    Lindner E, Bordelon D, Kim MD, Dergunov SA, Pinkhassik E, Chaum E (2012) Ion-selective optodes in a sampling capillary for tear fluid analysis. Electroanalysis 24:42–52. doi: 10.1002/elan.201100463 CrossRefGoogle Scholar
  104. 104.
    Jurmanovic S, Kordic S, Steinberg MD, Steinberg IM (2010) Organically modified silicate thin films doped with colourimetric pH indicators methyl red and bromocresol green as pH responsive sol-gel hybrid materials. Thin Solid Films 518:2234–2240. doi: 10.1016/j.tsf.2009.07.158 CrossRefGoogle Scholar
  105. 105.
    Kassal P, Surina R, Vrsaljko D, Steinberg IM (2014) Hybrid sol-gel thin films doped with a pH indicator: effect of organic modification on optical pH response and film surface hydrophilicity. J Sol-Gel Sci Technol 69:586–595. doi: 10.1007/s10971-013-3261-9 CrossRefGoogle Scholar
  106. 106.
    Safavi A, Maleki N, Bagheri M (2007) Modification of chemical performance of dopants in xerogel films with entrapped ionic liquid. J Mater Chem 17:1674–1681. doi: 10.1039/b613288j CrossRefGoogle Scholar
  107. 107.
    Beltran-Perez G, Lopez-Huerta F, Munoz-Aguirre S, Castillo-Mixcoatl J, Palomino-Merino R, Lozada-Morales R, Portillo-Moreno O (2006) Fabrication and characterization of an optical fiber pH sensor using sol-gel deposited TiO2 film doped with organic dyes. Sensors Actuators B Chem 120:74–78. doi: 10.1016/j.snb.2006.01.048 CrossRefGoogle Scholar
  108. 108.
    Islam S, Rahman R, Othaman Z, Riaz S, Naseem S (2014) Synthesis and characterization of hybrid matrix with encapsulated organic sensing dyes for pH sensing application. J Ind Eng Chem 20:4408–4414. doi: 10.1016/j.jiec.2014.02.008 CrossRefGoogle Scholar
  109. 109.
    Cao WQ, Duan YX (2005) Optical fiber-based evanescent ammonia sensor. Sensors Actuators B Chem 110:252–259. doi: 10.1016/j.snb.2005.02.015 CrossRefGoogle Scholar
  110. 110.
    Tao SQ, Xu L, Fanguy JC (2006) Optical fiber ammonia sensing probes using reagent immobilized porous silica coating as transducers. Sensors Actuators B Chem 115:158–163. doi: 10.1016/j.snb.2005.08.034 CrossRefGoogle Scholar
  111. 111.
    Tyszkiewicz C, Karasinski P, Rogozinski R (2010) Sol-gel derived sensitive films for ammonia sensors. Acta Phys Pol A 118:1262–1266CrossRefGoogle Scholar
  112. 112.
    Persad A, Chow KF, Wang W, Wang E, Okafor A, Jespersen N, Mann J, Bocarsly A (2008) Investigation of dye-doped sol-gels for ammonia gas sensing. Sensors Actuators B Chem 129:359–363. doi: 10.1016/j.snb.2007.08.039 CrossRefGoogle Scholar
  113. 113.
    Korent SM, Lobnik A, Mohr GJ (2007) Sol-gel-based optical sensor for the detection of aqueous amines. Anal Bioanal Chem 387:2863–2870. doi: 10.1007/s00216-007-1146-x CrossRefGoogle Scholar
  114. 114.
    Markovics A, Kovacs B (2013) Fabrication of optical chemical ammonia sensors using anodized alumina supports and sol-gel method. Talanta 109:101–106. doi: 10.1016/j.talanta.2013.01.054 CrossRefGoogle Scholar
  115. 115.
    Markovics A, Kovacs B (2014) Optical ammonia sensors for environmental applications. Anal Lett 47:465–477. doi: 10.1080/00032719.2013.843188 CrossRefGoogle Scholar
  116. 116.
    Chang Y, Bai H, Li S, Kuo C (2011) Bromocresol green/mesoporous silica adsorbent for ammonia gas sensing via an optical sensing instrument. Sensors 11:4060–4072. doi: 10.3390/s110404060 CrossRefGoogle Scholar
  117. 117.
    Li C, Zhang X, Han Z, Akermark B, Sun L, Shen G, Yu R (2006) A wide pH range optical sensing system based on a sol-gel encapsulated amino-functionalised corrole. Analyst 131:388–393. doi: 10.1039/b514510d CrossRefGoogle Scholar
  118. 118.
    Dobmeier KP, Charville GW, Schoenfisch MH (2006) Nitric oxide-releasing xerogel-based fiber-optic pH sensors. Anal Chem 78:7461–7466. doi: 10.1021/ac060995p CrossRefGoogle Scholar
  119. 119.
    Sanchez-Barragan I, Costa-Fernandez JM, Sanz-Medel A (2005) Tailoring the pH response range of fluorescent-based pH sensing phases by sol-gel surfactants co-immobilization. Sensors Actuators B Chem 107:69–76. doi: 10.1016/j.snb.2004.07.038 CrossRefGoogle Scholar
  120. 120.
    Sanchez-Barragan I, Costa-Fernandez JM, Sanz-Medel A, Valledor M, Ferrero FJ, Campo JC (2006) A ratiometric approach for pH optosensing with a single fluorophore indicator. Anal Chim Acta 562:197–203. doi: 10.1016/j.aca.2006.01.033 CrossRefGoogle Scholar
  121. 121.
    Turel M, Cajlakovic M, Austin E, Dakin JP, Uray G, Lobnik A (2008) Direct UV-LED lifetime pH sensor based on a semi-permeable sol-gel membrane immobilized luminescent Eu3+ chelate complex. Sensors Actuators B Chem 131:247–253. doi: 10.1016/j.snb.2007.11.047 CrossRefGoogle Scholar
  122. 122.
    Goncalves HMR, Maule CD, Jorge PAS, da Silva JCGE (2008) Fiber optic lifetime pH sensing based on ruthenium(II) complexes with dicarboxybipyridine. Anal Chim Acta 626:62–70. doi: 10.1016/j.aca.2008.07.044 CrossRefGoogle Scholar
  123. 123.
    Hiruta Y, Yoshizawa N, Citterio D, Suzuki K (2012) Highly durable double sol–gel layer ratiometric fluorescent pH optode based on the combination of two types of quantum dots and absorbing pH indicators. Anal Chem 84:10650–10656. doi: 10.1021/ac302178z CrossRefGoogle Scholar
  124. 124.
    Duong HD, Sohn OJ, Lam HT, Rhee JI (2006) An optical pH sensor with extended detection range based on fluoresceinamine covalently bound to sol-gel support. Microchem J 84:50–55. doi: 10.1016/j.microc.2006.04.013 CrossRefGoogle Scholar
  125. 125.
    Hiruta Y, Ando Y, Citterio D, Suzuki K (2010) A fast-response pH optode based on a fluoroionophore immobilized to a mesoporous silica thin film. Anal Sci 26:297–301CrossRefGoogle Scholar
  126. 126.
    Chu C, Lo Y (2008) Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS. Sensors Actuators B Chem 129:120–125. doi: 10.1016/j.snb.2007.07.082 CrossRefGoogle Scholar
  127. 127.
    Chu C, Lo Y (2009) Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS. Sensors Actuators B Chem 143:205–210. doi: 10.1016/j.snb.2009.09.019 CrossRefGoogle Scholar
  128. 128.
    Dansby-Sparks RN, Jin J, Mechery SJ, Sampathkumaran U, Owen TW, Yu BD, Goswami K, Hong K, Grant J, Xue Z (2010) Fluorescent-dye-doped sol-gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations. Anal Chem 82:593–600. doi: 10.1021/ac901890r CrossRefGoogle Scholar
  129. 129.
    Wencel D, Moore JP, Stevenson N, McDonagh C (2010) Ratiometric fluorescence-based dissolved carbon dioxide sensor for use in environmental monitoring applications. Anal Bioanal Chem 398:1899–1907. doi: 10.1007/s00216-010-4165-y CrossRefGoogle Scholar
  130. 130.
    Widmer S, Dorrestijn M, Camerlo A, Urek SK, Lobnik A, Housecroft CE, Constable EC, Scherer LJ (2014) Coumarin meets fluorescein: a Förster resonance energy transfer enhanced optical ammonia gas sensor. Analyst 139:4335–4342. doi: 10.1039/c4an00061g CrossRefGoogle Scholar
  131. 131.
    Buntem R, Intasiri A, Lueangchaichaweng W (2010) Facile synthesis of silica monolith doped with meso-tetra(p-carboxyphenyl)-porphyrin as a novel metal ion sensor. J Colloid Interface Sci 347:8–14. doi: 10.1016/j.jcis.2010.03.035 CrossRefGoogle Scholar
  132. 132.
    Yari A, Abdoli HA (2010) Sol-gel derived highly selective optical sensor for sensitive determination of the mercury(II) ion in solution. J Hazard Mater 178:713–717. doi: 10.1016/j.jhazmat.2010.01.146 CrossRefGoogle Scholar
  133. 133.
    Samadi-Maybodi A, Rezaei V (2014) A new sol-gel optical sensor with nonporous structure for determination of trace zinc. Sensors Actuators B Chem 199:418–423. doi: 10.1016/j.snb.2014.03.037 CrossRefGoogle Scholar
  134. 134.
    Balaji T, Sasidharan M, Matsunaga H (2005) Optical sensor for the visual detection of mercury using mesoporous silica anchoring porphyrin moiety. Analyst 130:1162–1167. doi: 10.1039/b503261j CrossRefGoogle Scholar
  135. 135.
    Balaji T, Sasidharan M, Matsunaga H (2006) Naked eye detection of cadmium using inorganic-organic hybrid mesoporous material. Anal Bioanal Chem 384:488–494. doi: 10.1007/s00216-005-0187-2 CrossRefGoogle Scholar
  136. 136.
    Metivier R, Leray I, Lebeau B, Valeur B (2005) A mesoporous silica functionalized by a covalently bound calixarene-based fluoroionophore for selective optical sensing of mercury(II) in water. J Mater Chem 15:2965–2973. doi: 10.1039/b501897h CrossRefGoogle Scholar
  137. 137.
    Zarabadi-Poor P, Badiei A, Yousefi AA, Barroso-Flores J (2013) Selective Optical Sensing of Hg(II) in Aqueous Media by H-Acid/SBA-15: A Combined Experimental and Theoretical Study. J Phys Chem C 117:9281–9289. doi: 10.1021/jp401479z CrossRefGoogle Scholar
  138. 138.
    Liu B, Zeng F, Liu Y, Wu S (2012) A FRET system built on quartz plate as a ratiometric fluorescence sensor for mercury ions in water. Analyst 137:1698–1705. doi: 10.1039/c2an16231h CrossRefGoogle Scholar
  139. 139.
    Karagoz F, Guney O (2015) Development and characterization of ion-imprinted sol-gel-derived fluorescent film for selective recognition of mercury(II) ion. J Sol-Gel Sci Technol 76:349–357. doi: 10.1007/s10971-015-3783-4 CrossRefGoogle Scholar
  140. 140.
    Guo L, Hong S, Lin X, Xie Z, Chen G (2008) An organically modified sol-gel membrane for detection of lead ion by using 2-hydroxy-1-naphthaldehydene-8-aminoquinoline as fluorescence probe. Sensors Actuators B Chem 130:789–794. doi: 10.1016/j.snb.2007.10.041 CrossRefGoogle Scholar
  141. 141.
    Wang J, Wang L (2012) Design and characterization of a novel sensor combined imaging and zinc ion sensing. Opt Fiber Technol 18:131–135. doi: 10.1016/j.yofte.2012.02.003 CrossRefGoogle Scholar
  142. 142.
    Lopes Pinheiro SC, Raimundo Jr., IM, Moreno-Bondi MC, Orellana G (2010) Simultaneous determination of copper, mercury and zinc in water with a tailored fluorescent bipyridine ligand entrapped in silica sol-gel. Anal Bioanal Chem 398:3127–3138. doi:  10.1007/s00216-010-4250-2
  143. 143.
    Tobler DJ, Shaw S, Benning LG (2009) Quantification of initial steps of nucleation and growth of silica nanoparticles: an in-situ SAXS and DLS study. Geochim Cosmochim Acta 73:5377–5393. doi: 10.1016/j.gca.2009.06.002 CrossRefGoogle Scholar
  144. 144.
    Nooney R, O’Connell C, Roy S, Boland K, Keegan G, Kelleher S, Daniels S, McDonagh C (2015) Synthesis and characterisation of far-red fluorescent cyanine dye doped silica nanoparticles using a modified microemulsion method for application in bioassays. Sensors Actuators B Chem 221:470–479. doi: 10.1016/j.snb.2015.06.117 CrossRefGoogle Scholar
  145. 145.
    Piao Y, Burns A, Kim J, Wiesner U, Hyeon T (2008) Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater 18:3745–3758. doi: 10.1002/adfm.200800731 CrossRefGoogle Scholar
  146. 146.
    Shi W, Li X, Ma H (2014) Fluorescent probes and nanoparticles for intracellular sensing of pH values. Methods Appl Fluoresc 2:042001. doi: 10.1088/2050-6120/2/4/042001 CrossRefGoogle Scholar
  147. 147.
    Canfarotta F, Whitcombe MJ, Piletsky SA (2013) Polymeric nanoparticles for optical sensing. Biotechnol Adv 31:1585–1599. doi: 10.1016/j.biotechadv.2013.08.010 CrossRefGoogle Scholar
  148. 148.
    Ruedas-Rama MJ, Walters JD, Orte A, Hall EAH (2012) Fluorescent nanoparticles for intracellular sensing: A review. Anal Chim Acta 751:1–23. doi: 10.1016/j.aca.2012.09.025 CrossRefGoogle Scholar
  149. 149.
    Korzeniowska B, Nooney R, Wencel D, McDonagh C (2013) Silica nanoparticles for cell imaging and intracellular sensing. Nanotechnology 24:442002. doi: 10.1088/0957-4484/24/44/442002 CrossRefGoogle Scholar
  150. 150.
    Cao YF, Koo YEL, Kopelman R (2004) Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. Analyst 129:745–750. doi: 10.1039/b403086a CrossRefGoogle Scholar
  151. 151.
    Koo YEL, Cao YF, Kopelman R, Koo SM, Brasuel M, Philbert MA (2004) Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors. Anal Chem 76:2498–2505. doi: 10.1021/ac035493f CrossRefGoogle Scholar
  152. 152.
    Lee YK, Smith R, Kopelman R (2009) Nanoparticle pebble sensors in live cells and in vivo. Annu Rev Anal Chem 2:57–76. doi: 10.1146/annurev.anchem.1.031207.112823 CrossRefGoogle Scholar
  153. 153.
    Lee YK, Kopelman R (2012) Nanoparticle pebble sensors in live cells In: Conn PM (Ed) Imaging and spectroscopic analysis of living cells: optical and spectroscopic techniques 504:419–470. doi:  10.1016/B978-0-12-391857-4.00021-5
  154. 154.
    Dmitriev RI, Borisov SM, Duessmann H, Sun S, Mueller BJ, Prehn J, Baklaushev VP, Klimant I, Papkovsky DB (2015) Versatile conjugated polymer nanoparticles for high-resolution O2 imaging in cells and 3d tissue models. ACS Nano 9:5275–5288. doi: 10.1021/acsnano.5b00771 CrossRefGoogle Scholar
  155. 155.
    Dmitriev RI, Borisov SM, Kondrashina AV, Pakan JMP, Anilkumar U, Prehn JHM, Zhdanov AV, McDermott KW, Klimant I, Papkovsky DB (2015) Imaging oxygen in neural cell and tissue models by means of anionic cell-permeable phosphorescent nanoparticles. Cell Mol Life Sci 72:367–381. doi: 10.1007/s00018-014-1673-5 CrossRefGoogle Scholar
  156. 156.
    Korzeniowska B, Raspe M, Wencel D, Woolley R, Jalink K, McDonagh C (2015) Development of organically modified silica nanoparticles for monitoring the intracellular level of oxygen using a frequency-domain FLIM platform. RCS Adv 5:36938–36947. doi: 10.1039/c4ra15742g Google Scholar
  157. 157.
    Burns A, Sengupta P, Zedayko T, Baird B, Wiesner U (2006) Core/shell fluorescent silica nanopartictes for chemical sensing: towards single-particle laboratories. Small 2:723–726. doi: 10.1002/smll.200600017 CrossRefGoogle Scholar
  158. 158.
    Peng J, He X, Wang K, Tan W, Wang Y, Liu Y (2007) Noninvasive monitoring of intracellular pH change induced by drug stimulation using silica nanoparticle sensors. Anal Bioanal Chem 388:645–654. doi: 10.1007/s00216-007-1244-9 CrossRefGoogle Scholar
  159. 159.
    Doussineau T, Trupp S, Mohr GJ (2009) Ratiometric pH-nanosensors based on rhodamine-doped silica nanoparticles functionalized with a naphthalimide derivative. J Colloid Interface Sci 339:266–270. doi: 10.1016/j.jcis.2009.07.044 CrossRefGoogle Scholar
  160. 160.
    Xu J, Sun L, Li J, Liang J, Zhang H, Yang W (2011) FITC and Ru(phen)(3)(2+) co-doped silica particles as visualized ratiometric pH indicator. Nanoscale Res Lett 6:561. doi: 10.1186/1556-276X-6-561 CrossRefGoogle Scholar
  161. 161.
    Chen Y, Chen H, Hung Y, Chien F, Chen P, Mou C (2012) Surface charge effect in intracellular localization of mesoporous silica nanoparticles as probed by fluorescent ratiometric pH imaging. RSC Adv 2:968–973. doi: 10.1039/c1ra00586c CrossRefGoogle Scholar
  162. 162.
    Wu S, Li Z, Han J, Han S (2011) Dual colored mesoporous silica nanoparticles with pH activable rhodamine-lactam for ratiometric sensing of lysosomal acidity. Chem Commun 47:11,276–11,278. doi: 10.1039/c1cc14627k CrossRefGoogle Scholar
  163. 163.
    Korzeniowska B, Woolley R, DeCourcey J, Wencel D, Loscher CE, McDonagh C (2014) Intracellular pH-sensing using core/shell silica nanoparticles. J Biomed Nanotechnol 10:1336–1345. doi: 10.1166/jbn.2014.1815 CrossRefGoogle Scholar
  164. 164.
    Sarkar K, Dhara K, Nandi M, Roy P, Bhaumik A, Banerjee P (2009) Selective Zinc(II)-ion fluorescence sensing by a functionalized mesoporous material covalently grafted with a fluorescent chromophore and consequent biological applications. Adv Funct Mater 19:223–234. doi: 10.1002/adfm.200800888 CrossRefGoogle Scholar
  165. 165.
    He C, Zhu W, Xu Y, Zhong Y, Zhou J, Qian X (2010) Ratiometric and reusable fluorescent nanoparticles for Zn2+ and H2PO4- detection in aqueous solution and living cells. J Mater Chem 20:10755–10764. doi: 10.1039/c0jm01925a CrossRefGoogle Scholar
  166. 166.
    Rastogi SK, Pal P, Aston DE, Bitterwolf TE, Branen AL (2011) 8-aminoquinoline functionalized silica nancoparticles: a fluorescent nanosensor for detection of divalent zinc in aqueous and in yeast cell suspension. ACS Appl Mater Interfaces 3:1731–1739. doi: 10.1021/am2002394 CrossRefGoogle Scholar
  167. 167.
    Seo S, Lee HY, Park M, Lim JM, Kang D, Yoon J, Jung JH (2010) Fluorescein-functionalized silica nanoparticles as a selective fluorogenic chemosensor for Cu2+ in living cells. Eur J Inorg Chem 6:843–847. doi: 10.1002/ejic.200901039 CrossRefGoogle Scholar
  168. 168.
    Zong C, Ai K, Zhang G, Li H, Lu L (2011) Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+. Anal Chem 83:3126–3132. doi: 10.1021/ac2001324 CrossRefGoogle Scholar
  169. 169.
    Schulz A, Woolley R, Tabarin T, McDonagh C (2011) Dextran-coated silica nanoparticles for calcium-sensing. Analyst 136:1722–1727. doi: 10.1039/c0an01009j CrossRefGoogle Scholar
  170. 170.
    Schulz A, McDonagh C (2012) Intracellular sensing and cell diagnostics using fluorescent silica nanoparticles. Soft Matter 8:2579–2585. doi: 10.1039/c2sm06862a CrossRefGoogle Scholar
  171. 171. (accessed on 20 February 2016)
  172. 172. (accessed on 20 February 2016)Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Mariusz Barczak
    • 1
  • Colette McDonagh
    • 2
  • Dorota Wencel
    • 2
    Email author
  1. 1.Faculty of ChemistryMaria Curie-Skłodowska UniversityLublinPoland
  2. 2.School of Physical Sciences, Biomedical Diagnostics InstituteDublin City UniversityDublin 9Ireland

Personalised recommendations