Microchimica Acta

, Volume 183, Issue 7, pp 2251–2258 | Cite as

A label-free colorimetric progesterone aptasensor based on the aggregation of gold nanoparticles

  • Gaoshang Du
  • Dongwei Zhang
  • Bing Xia
  • Lurong Xu
  • Shijian Wu
  • Shenshan Zhan
  • Xuan Ni
  • Xiaotong Zhou
  • Lumei WangEmail author
Original Paper


The authors describe an aptasensor for the detection of the gonadal hormone progesterone (P4) in aqueous solution. Gold nanoparticles (AuNPs) were coated with a P4-specific aptamer, and such particles do not aggregate in presence of NaCl due to the presence of the aptamer coating. If, however, progesterone is added, it will bind to the aptamer and release it from the surface. The uncoated AuNPs, on addition of NaCl, will aggregate and a color change from red (520 nm) to blue (650 nm) can be visually detected or photometrically quantified. The ratio of the absorbances at 650 and 520 nm is linearly related to the P4 concentration in the range from 2.6 to 800 nM. The complete detection range extends from 2.6 to 1400 nM, and the detection limit is 2.6 nM. Water containing various potential interferents, as well as tap water and urine, were spiked with P4 and the recoveries of P4 are in the range of 89.7–117.5%, 84.4–115.0% and 94.7–118.8%, respectively. This assay has a large potential with respect to the visual and instrumental determination of P4 in aquatic environment and urine.

Graphical abstract

The author describe a simple and label-free colorimetric method for progesterone detection based on the aggregation of aptame-modifiedr gold nanoparticles


Pregnancy marker Aptamer Assay AuNPs Aggregation Rapid testing Visual test 



This work was sponsored by the Natural Science Foundation of Shanghai (13ZR1421700), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and National Natural Science Foundation of China (20977062 & 31201682).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_1861_MOESM1_ESM.doc (2.6 mb)
ESM 1 (DOC 2.55 mb)


  1. 1.
    Flood PF, Tyler NJC, Read EK, Rodway MJ, Chedrese PJ (2005) Ovarian and placental production of progesterone and oestradiol during pregnancy in reindeer. Anim Reprod Sci 85(1–2):147–162. doi: 10.1016/j.anireprosci.2004.03.001 CrossRefGoogle Scholar
  2. 2.
    Fent K (2015) Progestins as endocrine disrupters in aquatic ecosystems: concentrations, effects and risk assessment. Environ Int 84:115–130. doi: 10.1016/j.envint.2015.06.012 CrossRefGoogle Scholar
  3. 3.
    Kumar V, Johnson AC, Trubiroha A, Tumovä J, Ihara M, Grabic R, Kloas W, Tanaka H, Kroupovä HK (2015) The challenge presented by progestins in ecotoxicological research: a critical review. Environ Sci Technol 49(5):2625–2638. doi: 10.1021/es5051343 CrossRefGoogle Scholar
  4. 4.
    Jimёnez GC, Eissa S, Ng A, Alhadrami H, Zourob M, Siaj M (2015) Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal Chem 87(2):1075–1082. doi: 10.1021/ac503639s CrossRefGoogle Scholar
  5. 5.
    Tschmelak J, Proll G, Gauglitz G (2004) Sub-nanogram per litre detection of the emerging contaminant progesterone with a fully automated immunosensor based on evanescent field techniques. Anal Chim Acta 519(2):143–146. doi: 10.1016/j.aca.2004.06.031 CrossRefGoogle Scholar
  6. 6.
    Ren S, Wang X, Lin Z, Li Z, Ying X, Chen G, Lin JM (2008) Development of a high-throughput, indirect antibody immobilization format chemiluminescence enzyme immunoassay (CLEIA) for the determination of progesterone in human serum. Lumin J Biol Chem Lumin 23(3):175–181. doi: 10.1002/bio.1031 CrossRefGoogle Scholar
  7. 7.
    Sun L, Yong W, Chu X, Lin JM (2009) Simultaneous determination of 15 steroidal oral contraceptives in water using solid-phase disk extraction followed by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216(28):5416–5423. doi: 10.1016/j.chroma.2009.05.041 CrossRefGoogle Scholar
  8. 8.
    Tschmelak J, Käppel N, Gauglitz G (2005) TIRF-based biosensor for sensitive detection of progesterone in milk based on ultra-sensitive progesterone detection in water. Anal Bioanal Chem 382(8):1895–1903. doi: 10.1007/s00216-005-3261-x CrossRefGoogle Scholar
  9. 9.
    Käppel ND, Pröll F, Gauglitz G (2007) Development of a TIRF-based biosensor for sensitive detection of progesterone in bovine milk. Biosens Bioelectron 22(9–10):2295–2300. doi: 10.1016/j.bios.2006.11.030 CrossRefGoogle Scholar
  10. 10.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822. doi: 10.1038/346818a0 CrossRefGoogle Scholar
  11. 11.
    Robertson DL, Joyce GF (1990) Selection in vitro of RNA molecules that specifically cleaves single-stranded DNA. Nature 344(6265):467–468. doi: 10.1038/344467a0 CrossRefGoogle Scholar
  12. 12.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9(7):537–550. doi: 10.1038/nrd3141 CrossRefGoogle Scholar
  13. 13.
    Rodriguez MC, Kawde AN, Wang J (2005) Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem Commun 34:4267–4269. doi: 10.1039/b506571b CrossRefGoogle Scholar
  14. 14.
    Freeman R, Liu X, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133(30):11597–11604. doi: 10.1021/ja202639m CrossRefGoogle Scholar
  15. 15.
    Zhan X, Hu G, Wagberg T, Zhan S, Xu H, Zhou P (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183(2). doi: 10.1007/s00604-015-1718-y
  16. 16.
    Li L, Li W (2015) Colorimetric kinetic determination of potassium ions based on the use of a specific aptamer and catalytically active gold nanoparticles. Microchim Acta 182(13–14):2307–2312. doi: 10.1007/s00604-015-1581-x CrossRefGoogle Scholar
  17. 17.
    Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5–6):479–491. doi: 10.1007/s00604-013-1156-7 CrossRefGoogle Scholar
  18. 18.
    Palchetti I, Mascini M (2008) Nucleic acid biosensors for environmental pollution monitoring. Analyst 133(7):846–854. doi: 10.1039/b802920m CrossRefGoogle Scholar
  19. 19.
    Xiang Y, Wu P, Tan LH, Lu Y (2014) DNAzyme-functionalized gold nanoparticles for biosensing. Adv Biochem Eng Biotechnol 140:93–120. doi: 10.1007/10_2013_242 Google Scholar
  20. 20.
    Zhang D, Yang J, Ye J, Xu L, Xu H, Zhan S, Xia B, Wang L (2016) Colorimetric detection of bisphenol a based on unmodified aptamer and cationic polymer aggregated gold nanoparticles. Anal Biochem 499:51–56. doi: 10.1016/j.ab.2016.01.011 CrossRefGoogle Scholar
  21. 21.
    He L, Luo Y, Zhi W, Zhou P (2013) Colorimetric sensing of tetracyclines in milk based on the assembly of cationic conjugated polymer-aggregated gold nanoparticles. Food Anal Methods 6(6):1704–1711. doi: 10.1007/s12161-013-9577-9 CrossRefGoogle Scholar
  22. 22.
    Zhang D, Zhang W, Ye J, Zhan S, Xia B, Lv J, Xu H, Du G, Wang L (2016) A label-free colorimetric biosensor for 17β-estradiol detection using nanoparticles assembled by aptamer and cationic polymer. Aust J Chem 69(1):12–19. doi: 10.1071/ch14735 Google Scholar
  23. 23.
    Zhan S, Yu M, Lv J, Wang L, Zhou P (2014) Colorimetric detection of trace arsenic(III) in aqueous solution using arsenic aptamer and gold nanoparticles. Aust J Chem 67(5):813–818. doi: 10.1071/ch13512 CrossRefGoogle Scholar
  24. 24.
    Zhan S, Wu Y, He L, Wang F, Zhan X, Zhou P, Qiu S (2012) A silver-specific DNA-based bio-assay for Ag(Ι) detection via the aggregation of unmodified gold nanoparticles in aqueous solution coupled with resonance Rayleigh scattering. Anal Methods 4(12):3997–4002. doi: 10.1039/c2ay25403d CrossRefGoogle Scholar
  25. 25.
    Luan Y, Chen J, Xie G, Li C, Ping H, Ma Z, Lu A (2015) Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Microchim Acta 182(5–6):995–1001. doi: 10.1007/s00604-014-1420-5 CrossRefGoogle Scholar
  26. 26.
    Liang A, Ouyang H, Jiang Z (2011) Resonance scattering spectral detection of trace ATP based on label-free aptamer reaction and nanogold catalysis. Analyst 136(21):4514–4519. doi: 10.1039/c1an15542c CrossRefGoogle Scholar
  27. 27.
    He L, Zhi W, Wu Y, Zhan S, Wang F, Xing H, Zhou P (2012) A highly sensitive resonance scattering based sensor using unmodified gold nanoparticles for daunomycin detection in aqueous solution. Anal Methods 4(8):2266. doi: 10.1039/c2ay25596k CrossRefGoogle Scholar
  28. 28.
    Wu Y, Liu L, Zhan S, Wang F, Zhou P (2012) Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst 137(18):4171–4178. doi: 10.1039/c2an35711a CrossRefGoogle Scholar
  29. 29.
    He Y, Liao L, Xu C, Wu R, Li S, Yang Y (2014) Determination of ATP by resonance light scattering using a binuclear uranyl complex and aptamer modified gold nanoparticles as optical probes. Microchim Acta 182(1–2):419–426. doi: 10.1007/s00604-014-1350-2 Google Scholar
  30. 30.
    Soh JH, Lin Y, Rana S, Ying JY, Stevens MM (2015) Colorimetric detection of small molecules in complex matrixes via target-mediated growth of aptamer-functionalized gold nanoparticles. Anal Chem 87(15):7644–7652. doi: 10.1021/acs.analchem.5b00875 CrossRefGoogle Scholar
  31. 31.
    Wu Y, Zhan S, Xing H, He L, Xu L, Zhou P (2012) Nanoparticles assembled by aptamers and crystal violet for arsenic(III) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay. Nanoscale 4(21):6841–6849. doi: 10.1039/c2nr31418e CrossRefGoogle Scholar
  32. 32.
    Xu J, Li Y, Bie J, Jiang W, Guo J, Luo Y, Shen F, Sun C (2015) Colorimetric method for determination of bisphenol a based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta 182(13–14):2131–2138. doi: 10.1007/s00604-015-1547-z CrossRefGoogle Scholar
  33. 33.
    Jin R, Wu W, Li Z, Mirkin CA, Schatz GC, What controls the melting properties of DNA-linked goldnanoparticles assemblies? Journal of the American Chemical Society 125 (6):1643–1654. doi: 10.1021/ja021096v
  34. 34.
    Duy SV, Fayad PB, Barbeau B, Prévost M, Sauvé S (2012) Using a novel sol-gel stir bar sorptive extraction method for the analysis of steroid hormones in water by laser diode thermal desorption/atmospheric chemical ionization tandem mass spectrometry. Talanta 101:337–345. doi: 10.1016/j.talanta.2012.09.036 CrossRefGoogle Scholar
  35. 35.
    Almeida C, Nogueira JMF (2006) Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J Pharm Biomed Anal 41(4):1303–1311. doi: 10.1016/j.jpba.2006.02.037 CrossRefGoogle Scholar
  36. 36.
    Chang H, Wu S, Hu J, Asami M, Kunikane S (2008) Trace analysis of androgens and progestogens in environmental waters by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A 1195(1–2):44–51. doi: 10.1016/j.chroma.2008.04.05 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Gaoshang Du
    • 1
    • 2
  • Dongwei Zhang
    • 3
  • Bing Xia
    • 3
  • Lurong Xu
    • 1
    • 2
  • Shijian Wu
    • 4
  • Shenshan Zhan
    • 1
    • 2
  • Xuan Ni
    • 1
    • 2
  • Xiaotong Zhou
    • 1
    • 2
  • Lumei Wang
    • 1
    • 2
    Email author
  1. 1.School of Agriculture and Biology, and Key Laboratory of Urban Agriculture (South), Ministry of AgricultureShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Bor S. Luh Food Safety Research CenterShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  3. 3.School of Chemical and Environmental EngineeringShanghai Institute of TechnologyShanghaiPeople’s Republic of China
  4. 4.Shanghai Environmental Monitoring CenterShanghaiPeople’s Republic of China

Personalised recommendations