Microchimica Acta

, Volume 183, Issue 7, pp 2063–2083 | Cite as

Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis

  • Fabiana Arduini
  • Stefano Cinti
  • Viviana Scognamiglio
  • Danila Moscone
Review Article


This overview (with 114 refs.) covers the progress made between 2010 and 2015 in the field of nanomaterial based electrochemical biosensors for pesticides in food. Its main focus is on strategies to analyze real samples. The review first gives a short introduction into the most often used biorecognition elements. These include (a) enzymes (resulting in inhibition-based and direct catalytic biosensors), (b) antibodies (resulting in immunosensors), and (c) aptamers (resulting in aptasensors). The next main section covers the various kinds of nanomaterials for use in biosensors and includes carbonaceous species (carbon nanotubes, graphene, carbon black and others), and non-carbonaceous species in the form of nanoparticles, rods, or porous materials. Aspects of sample treatment and real sample analysis are treated next before discussing vanguard technologies in tailor-made food analysis.

Graphical abstract

Last trends made between 2010 and 2015 on the use of nanomaterials, including graphene, carbon nanotubes, carbon black, metallic nanoparticles, for the development of enzymatic biosensors, immunosensors, and aptasensors were reported, tackling the issues related to pesticide detection in agrifood sector.


Enzymatic biosensor Immunosensor Aptasensor Carbon nanotubes Nanorods Nanoparticles Graphene Carbon black Sustainable food chain Food safety 



F.A. likes to acknowledge the Italian Ministry of Defence, Aptamer BW project for financial support.

Compliance with ethical standards Please check "Compliance with ethical standards" statement if presented correctly.ok

The author(s) declare that they have no competing interests


  1. 1.
    García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A (2012) Present and future challenges in food analysis: Foodomics. Anal Chem 84:10150–10159CrossRefGoogle Scholar
  2. 2.
    Scognamiglio V, Arduini F, Palleschi G, Rea G (2014) Biosensing technology for sustainable food safety. Trends Anal Chem 62:1–10CrossRefGoogle Scholar
  3. 3.
  4. 4.
    EU Dir. 2013/39/EC for inland surface watersGoogle Scholar
  5. 5.
  6. 6.
    JRC FORESIGHT STUDY of European Commission; Joint Research Centre Tomorrow’s Healthy Society Research Priorities for Foods and Diets 2014 Final Report; accessed on 31 January 2016
  7. 7.
    Del Carlo M, Compagnone D (2010) Recent strategies for the biological sensing of pesticides: from the design to the application in real samples. Bioanal Rev 1:159–176CrossRefGoogle Scholar
  8. 8.
    Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C (2016) Electrochemical biosensors for fast detection of food contaminants-trends and perspective. Trends Anal Chem. doi: 10.1016/j.trac.2015.12.017 Google Scholar
  9. 9.
    Viswanathan S, Radecki J (2008) Nanomaterials in electrochemical biosensors for food analysis-a review. Pol J Food Nutr Sci 58:157–164Google Scholar
  10. 10.
    Scognamiglio V (2013) Nanotechnology in glucose monitoring: advances and challenges in the last 10 years. Biosens Bioelectron 47:12–25CrossRefGoogle Scholar
  11. 11.
    Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensors for food analysis. Monatsh Chem 140:891–899CrossRefGoogle Scholar
  12. 12.
    Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484CrossRefGoogle Scholar
  13. 13.
    Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C (2014) Recent trends in SELEX technique, and its application to food safety monitoring. Microchim Acta 181:479–491CrossRefGoogle Scholar
  14. 14.
    Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1–22 References 14 and 96 based on original manuscript we received were identical. Hence, the latter was deleted and reference list and citations were adjusted. Please check if appropriate.okGoogle Scholar
  15. 15.
    Ju KJ, Feng JX, Feng JJ, Zhang QL, Xu TQ, Wei J, Wang AJ (2015) Biosensor for pesticide triazophos based on its inhibition of acetylcholinesterase and using a glassy carbon electrode modified with coral-like gold nanostructures supported on reduced graphene oxide. Microchim Acta 182:2427–2434CrossRefGoogle Scholar
  16. 16.
    Wei M, Zeng G, Lu Q (2014) Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim Acta 181:121–127okGoogle Scholar
  17. 17.
    Arduini F, Guidone S, Amine A, Palleschi G, Moscone D (2013) Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sens Actuat B 179:201–208CrossRefGoogle Scholar
  18. 18.
    Liu S, Zheng Z, Li X (2013) Advances in pesticide biosensors: current status, challenges, and future perspectives. Anal Bioanal Chem 405:63–90CrossRefGoogle Scholar
  19. 19.
    Pérez-López B, Merkoçi A (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci Tech 22:625–639CrossRefGoogle Scholar
  20. 20.
    Zheng Z, Zhou Y, Li X, Liu S, Tang Z (2011) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 26:3081–3085CrossRefGoogle Scholar
  21. 21.
    Arduini F, Amine A, Moscone D, Palleschi G (2010) Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Microchim Acta 170:193–214CrossRefGoogle Scholar
  22. 22.
    Amine A, Arduini F, Moscone D, Palleschi G (2016) Recent advances in biosensors based on enzyme inhibition. Biosens Bioelectron 76:180–194CrossRefGoogle Scholar
  23. 23.
    Andreescu S, Marty JL (2006) Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 23:1–15CrossRefGoogle Scholar
  24. 24.
    Periasamy AP, Umasankar Y, Chen SM (2009) Nanomaterials acetylcholinesterase enzyme matrices for organophosphorus pesticides electrochemical sensors:a review. Sensors 9:4034–4055CrossRefGoogle Scholar
  25. 25.
    Benilova I, Arkhypova Dzydevych SV, Jaffrezic-Renault N, Martelet C, Soldatkin AP (2006) Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: study by potentiometric biosensor. Pestic Biochem Phys 86:203–210CrossRefGoogle Scholar
  26. 26.
    Soldatkin OO, Burdak OS, Sergeyeva TA, Arkhypova VM, Dzyadevych SV, Soldatkin AP (2013) Acetylcholinesterase-based conductometric biosensor for determination of aflatoxin B1. Sens Actuat B 188:999–1003CrossRefGoogle Scholar
  27. 27.
    Del Carlo M, Pepe A, Sergi M, Mascini M, Tarentini A, Compagnone D (2010) Detection of coumaphos in honey using a screening method based on an electrochemical acetylcholinesterase bioassay. Talanta 81:76–81CrossRefGoogle Scholar
  28. 28.
    Cremisini C, Di Sario S, Mela J, Pilloton R, Palleschi G (1995) Evaluation of the use of free and immobilised acetylcholinesterase for paraoxon detection with an amperometric choline oxidase biosensor. Anal Chim Acta 311:273–280CrossRefGoogle Scholar
  29. 29.
    Arduini F, Ricci F, Tuta CS, Moscone D, Amine A, Palleschi G (2006) Detection of carbammic and organophosphorus pesticides in water samples using cholinesterase biosensor based on Prussian blue modified screen printed electrode. Anal Chim Acta 580:155–162CrossRefGoogle Scholar
  30. 30.
    Hernandez S, Palchetti I, Mascini M (2000) Determination of anticholinesterase activity for pesticides monitoring using a thiocholine sensor. Int J Environ Anal Chem 78:263–278CrossRefGoogle Scholar
  31. 31.
    Lin YH, Lu F, Wang J (2004) Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanal 16:145–149CrossRefGoogle Scholar
  32. 32.
    Hou S, Ou Z, Chen Q, Wu B (2012) Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol–gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode. Biosens Bioelectron 33:44–49Google Scholar
  33. 33.
    Arduini F, Majorani C, Amine A, Moscone D, Palleschi G (2011) Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochim Acta 56:4209–4215CrossRefGoogle Scholar
  34. 34.
    Liu Q, Fei A, Huan J, Mao H, Wang K (2015) Effective amperometric biosensor for carbaryl detection based on covalent immobilization acetylcholinesterase on multiwall carbon nanotubes/graphene oxide nanoribbons nanostructure. J Electroanal Chem 740:8–13CrossRefGoogle Scholar
  35. 35.
    Cesarino I, Moraes FC, Lanza MR, Machado SA (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline–carbon nanotubes. Food Chem 135:873–879CrossRefGoogle Scholar
  36. 36.
    Zhang L, Zhang A, Du D, Lin Y (2012) Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides. Nanoscale 4:4674–4679CrossRefGoogle Scholar
  37. 37.
    Du D, Wang M, Cai J, Zhang A (2010) Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide. Sens Actuators, B 146:337–341CrossRefGoogle Scholar
  38. 38.
    Liu Y, Wang G, Li C, Zhou Q, Wang M, Yang L (2014) A novel acetylcholinesterase biosensor based on carboxylic graphene coated with silver nanoparticles for pesticide detection. Mater Sci Eng C 35:253–258CrossRefGoogle Scholar
  39. 39.
    de Oliveira Marques PRB, Nunes GS, dos Santos TCR, Andreescu S, Marty JL (2004) Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster: application in amperometric biosensors for methamidophos pesticide detection. Biosens Bioelectron 20:825–832CrossRefGoogle Scholar
  40. 40.
    Arduini F, Neagu D, Scognamiglio V, Patarino S, Moscone D, Palleschi G (2015) Automatable flow system for paraoxon detection with an embedded screen-printed electrode tailored with butyrylcholinesterase and Prussian blue nanoparticles. Chemosensors 3:129–145CrossRefGoogle Scholar
  41. 41.
    Arduini F, Palleschi G (2012) In Portable Chemical Sensors (pp. 261–278). In: Disposable electrochemical biosensor based on cholinesterase inhibition with improved shelf-life and working stability for nerve agent detection. Springer, NetherlandsCrossRefGoogle Scholar
  42. 42.
    Chauhan N, Pundir CS (2011) An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides. Anal Chim Acta 701:66–74CrossRefGoogle Scholar
  43. 43.
    Bao J, Hou C, Chen M, Li J, Huo D, Yang M, Luo X, Lei Y (2015) Plant esterase-chitosan/gold nanoparticles–graphene nanosheet composite-based biosensor for the ultrasensitive detection of organophosphate pesticides. J Agric Food Chem 63:10319–10326CrossRefGoogle Scholar
  44. 44.
    Haddaoui M, Raouafi N (2015) Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the detection of ppb levels of herbicide. Sens Actuat B 219:171–178CrossRefGoogle Scholar
  45. 45.
    Arduini F, Amine A (2014) Biosensors based on enzyme inhibition. In Biosensors Based on Aptamers and Enzymes (pp. 299–326). Springer Berlin, HeidelbergGoogle Scholar
  46. 46.
    Tortolini C, Bollella P, Antiochia R, Favero G, Mazzei F (2016) Inhibition-based biosensor for atrazine detection. Sens Actuat B 224:552–558CrossRefGoogle Scholar
  47. 47.
    Zapp E, Brondani D, Vieira IC, Scheeren CW, Dupont J, Barbosa AM, Ferreira VS (2011) Biomonitoring of methomyl pesticide by laccase inhibition on sensor containing platinum nanoparticles in ionic liquid phase supported in montmorillonite. Sens Actuat B 155:331–339CrossRefGoogle Scholar
  48. 48.
    Ribeiro FWP, Barroso MF, Morais S, Viswanathan S, de Lima-Neto P, Correia AN, Oliveira ABPP, Delerue-Matos C (2014) Simple laccase-based biosensor for formetanate hydrochloride quantification in fruits. Bioelectrochem 95:7–14CrossRefGoogle Scholar
  49. 49.
    Lee JH, Park JY, Min K, Cha HJ, Choi SS, Yoo, YJ (2010) A novel organophosphorus hydrolase-based biosensor using mesoporous carbons and carbon black for the detection of organophosphate nerve agents. Biosens Bioelectron 25:1566–1570Google Scholar
  50. 50.
    Chen S, Huang J, Du D, Li J, Tu H, Liu D, Zhang A (2011) Methyl parathion hydrolase based nanocomposite biosensors for highly sensitive and selective determination of methyl parathion. Biosens Bioelectron 26:4320–4325CrossRefGoogle Scholar
  51. 51.
    Tang J, Tang D (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182:2077–2089CrossRefGoogle Scholar
  52. 52.
    Valera E, García-Febrero R, Pividori I, Sánchez-Baeza F, Marco MP (2014) Coulombimetric immunosensor for paraquat based on electrochemical nanoprobes. Sens Actuat B 194:353–360CrossRefGoogle Scholar
  53. 53.
    Dai Z, Liu H, Shen Y, Su X, Xu Z, Sun Y, Zou X (2012) Attomolar determination of coumaphos by electrochemical displacement immunoassay coupled with oligonucleotide sensing. Anal Chem 84:8157–8163CrossRefGoogle Scholar
  54. 54.
    Liu G, Guo W, Song D (2014) A multianalyte electrochemical immunosensor based on patterned carbon nanotubes modified substrates for detection of pesticides. Biosens Bioelectron 52:360–366CrossRefGoogle Scholar
  55. 55.
    Sun X, Zhu Y, Wang X (2012) Amperometric immunosensor based on deposited gold nanocrystals/4, 4′-thiobisbenzenethiol for determination of carbofuran. Food Control 28:184–191CrossRefGoogle Scholar
  56. 56.
    Scognamiglio V, Antonacci A, Lambreva MD, Litescu SC, Rea G (2015) Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors. Biosens Bioelectron 74:1076–1086CrossRefGoogle Scholar
  57. 57.
    Lim YC, Kouzani AZ, Duan W (2010) Aptasensors: a review. J Biomed Nanotechnol 6:93–105CrossRefGoogle Scholar
  58. 58.
    Sassolas A, Prieto-Simón B, Marty J-L (2012) Biosensors for pesticide detection: new trends. Am J Anal Chem 3:210–232CrossRefGoogle Scholar
  59. 59.
    He J, Liu Y, Fan M, Liu X (2011) Isolation and identification of the DNA aptamer target to acetamiprid. J Agric Food Chem 59:1582–1586CrossRefGoogle Scholar
  60. 60.
    Fan L, Zhao G, Shi H, Liu M, Li Z (2013) A highly selective electrochemical impedance spectroscopy-based aptasensor for sensitive detection of acetamiprid. Biosens Bioelectron 43:12–18CrossRefGoogle Scholar
  61. 61.
    Prodromidis Mamas I (2010) Impedimetric immunosensors-a review. Electrochim Acta 55:4227–4233CrossRefGoogle Scholar
  62. 62.
    Fei A, Liu Q, Huan J, Qian J, Dong X, Qiu B, Mao H, Wang K (2015) Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens Bioelectron 70:122–129CrossRefGoogle Scholar
  63. 63.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  64. 64.
    Oliveira TMBF, Barroso MF, Morais S, de Lima-Neto P, Correia AN, Oliveira MBPP, Delerue-Matos C (2013) Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 106:137–143CrossRefGoogle Scholar
  65. 65.
    Du D, Ye X, Cai J, Liu J, Zhang A (2010) Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Biosens Bioelectron 25:2503–2508CrossRefGoogle Scholar
  66. 66.
    Çevik S, Timur S, Anik Ü (2013) Poly (allylamine hydrochloride) functionalized multiwalled carbon nanotube modified carbon paste electrode as acetylcholinesterase biosensor transducer. Electroanal 25:2377–2383Google Scholar
  67. 67.
    Zhai C, Sun X, Zhao W, Gong Z, Wang X (2013) Acetylcholinesterase biosensor based on chitosan/prussian blue/multiwall carbon nanotubes/hollow gold nanospheres nanocomposite film by one-stepelectrodeposition. Biosens Bioelectron 42:124–130CrossRefGoogle Scholar
  68. 68.
    Sun X, Cao Y, Gong Z, Wang X, Zhang Y, Gao J (2012) An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors 12:17247–17261CrossRefGoogle Scholar
  69. 69.
    Chen D, Jiao Y, Jia H, Guo Y, Sun X, Wang X, Xu J (2015) Acetylcholinesterase biosensor for chlorpyrifos detection based on multi-walled carbon nanotubes-SnO2-chitosan nanocomposite modified screen-printed electrode. Int J Electrochem Sci 10:10491–10501Google Scholar
  70. 70.
    Khaled E, Kamel MS, Hassan HNA, Abdel-Gawad H, Aboul-Enein HY (2014) Performance of a portable biosensor for the analysis of ethion residues. Talanta 119:467–472CrossRefGoogle Scholar
  71. 71.
    Kesik M, Kanik FE, Turan J, Kolb M, Timur S, Bahadir M, Toppare L (2014) An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides. Sens Actuat B 205:39–49CrossRefGoogle Scholar
  72. 72.
    Gan N, Yang X, Xie D, Wu Y, Wen W (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 10:625–638CrossRefGoogle Scholar
  73. 73.
    Ivanov AN, Younusov RR, Evtugyn GA, Arduini F, Moscone D, Palleschi G (2011) Acetylcholinesterase biosensor based on single-walled carbon nanotubes—Co phtalocyanine for organophosphorus pesticides detection. Talanta 85:216–221CrossRefGoogle Scholar
  74. 74.
    Liu G, Wang S, Liu J, Song D (2012) An electrochemical immunosensor based on chemical assembly of vertically aligned carbon nanotubes on carbon substrates for direct detection of the pesticide endosulfan in environmental water. Anal Chem 84:3921–3928CrossRefGoogle Scholar
  75. 75.
    Zheng Y, Liu Z, Jing Y, Li J, Zhan H (2015) An acetylcholinesterase biosensor based on ionic liquid functionalized graphene–gelatin-modified electrode for sensitive detection of pesticides. Sens Actuat B 210:389–397CrossRefGoogle Scholar
  76. 76.
    Oliveira TM, Barroso MF, Morais S, Araújo M, Freire C, de Lima-Neto P, Correia AN, Oliveira MBPP, Delerue-Matos C (2014) Sensitive bi-enzymatic biosensor based on polyphenoloxidases–gold nanoparticles–chitosan hybrid film–graphene doped carbon paste electrode for carbamates detection. Bioelectrochem 98:20–29CrossRefGoogle Scholar
  77. 77.
    Zhang Y, Liu H, Yang Z, Ji S, Wang J, Pang P, Feng L, Wang H, Wu Z, Yang W (2015) An acetylcholinesterase inhibition biosensor based on a reduced graphene oxide/silver nanocluster/chitosan nanocomposite for detection of organophosphorus pesticides. Anal Methods 7:6213–6219CrossRefGoogle Scholar
  78. 78.
    Yang Y, Asiri AM, Du D, Lin Y (2014) Acetylcholinesterase biosensor based on a gold nanoparticle–polypyrrole–reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 139:3055–3060CrossRefGoogle Scholar
  79. 79.
    Wang G, Tan X, Zhou Q, Liu Y, Wang M, Yang L (2014) Synthesis of highly dispersed zinc oxide nanoparticles on carboxylic graphene for development a sensitive acetylcholinesterase biosensor. Sens Actuat B 190:730–736CrossRefGoogle Scholar
  80. 80.
    Yang L, Wang G, Liu Y, Wang M (2013) Development of a biosensor based on immobilization of acetylcholinesterase on NiO nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Talanta 113:135–141CrossRefGoogle Scholar
  81. 81.
    Zhou Q, Yang L, Wang G, Yang Y (2013) Acetylcholinesterase biosensor based on SnO2 nanoparticles–carboxylic graphene–nafion modified electrode for detection of pesticides. Biosens Bioelectron 49:25–31CrossRefGoogle Scholar
  82. 82.
    Wang K, Liu Q, Dai L, Yan J, Ju C, Qiu B, Wu X (2011) A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS–decorated graphene nanocomposite. Anal Chim Acta 695:84–88CrossRefGoogle Scholar
  83. 83.
    Li X, Zheng Z, Liu X, Zhao S, Liu S (2015) Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Biosens Bioelectron 64:1–5CrossRefGoogle Scholar
  84. 84.
    Arduini F, Amine A, Majorani C, Di Giorgio F, De Felicis D, Cataldo F, Moscone D, Palleschi G (2010) High performance electrochemical sensor based on modified screen-printed electrodes with cost-effective dispersion of nanostructured carbon black. Electrochem Comm 31:346–350CrossRefGoogle Scholar
  85. 85.
    Lo TW, Aldous L, Compton RG (2012) The use of nano-carbon as an alternative to multi-walled carbon nanotubes in modified electrodes for adsorptive stripping voltammetry. Sens Actuat B 162:361–368CrossRefGoogle Scholar
  86. 86.
    Cinti S, Arduini F, Carbone M, Sansone L, Cacciotti I, D. M, Palleschi G (2015) Screen-printed electrodes modified with carbon nanomaterials: a comparison among carbon black, carbon nanotubes and graphene. Electroanal 27:2230–2238CrossRefGoogle Scholar
  87. 87.
    Vicentini FC, Ravanini AE, Figueiredo-Filho LC, Iniesta J, Banks CE, Fatibello-Filho O (2015) Imparting improvements in electrochemical sensors: evaluation of different carbon blacks that give rise to significant improvement in the performance of electroanalytical sensing platforms. Electrochim Acta 157:125–133CrossRefGoogle Scholar
  88. 88.
    Arduini F, Forchielli M, Amine A, Neagu D, Cacciotti I, Nanni F, Moscone D, Palleschi G (2015) Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Microchim Acta 182:643–651CrossRefGoogle Scholar
  89. 89.
    Jeyapragasam T, Saraswathi R (2014) Electrochemical biosensing of carbofuran based on acetylcholinesterase immobilized onto iron oxide–chitosan nanocomposite. Sens Actuat B 191:681–687CrossRefGoogle Scholar
  90. 90.
    Evtugyn GA, Shamagsumova RV, Padnya PV, Stoikov II, Antipin IS (2014) Cholinesterase sensor based on glassy carbon electrode modified with Ag nanoparticles decorated with macrocyclic ligands. Talanta 127:9–17CrossRefGoogle Scholar
  91. 91.
    Shamagsumova RV, Shurpik DN, Padnya PL, Stoikov II, Evtugyn GA (2015) Acetylcholinesterase biosensor for inhibitor measurements based on glassy carbon electrode modified with carbon black and pillar [5] arene. Talanta 144:559–568CrossRefGoogle Scholar
  92. 92.
    Wei M, Wang J (2015) A novel acetylcholinesterase biosensor based on ionic liquids-AuNPs-porous carbon composite matrix for detection of organophosphate pesticides. Sens Actuat B 211:290–296CrossRefGoogle Scholar
  93. 93.
    Liu Y, Wei M (2014) Development of acetylcholinesterase biosensor based on platinum–carbon aerogels composite for determination of organophosphorus pesticides. Food Control 36:49–54CrossRefGoogle Scholar
  94. 94.
    Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177:245–270CrossRefGoogle Scholar
  95. 95.
    Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807CrossRefGoogle Scholar
  96. 96.
    Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128:3939–3945CrossRefGoogle Scholar
  97. 97.
    Pichetsurnthorn P, Vattipalli K, Prasad S (2012) Nanoporous impedemetric biosensor for detection of trace atrazine from water samples. Biosens Bioelectron 32:155–162CrossRefGoogle Scholar
  98. 98.
    Wei W, Zong X, Wang X, Yin L, Pu Y, Liu S (2012) A disposable amperometric immunosensor for chlorpyrifos-methyl based on immunogen/platinum doped silica sol–gel film modified screen-printed carbon electrode. Food Chem 135:888–892CrossRefGoogle Scholar
  99. 99.
    Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2015) Cyclic voltammetric acetylcholinesterase biosensor for the detection of captan in apple samples with the aid of chemometrics. Anal Bioanal Chem 407:1–6CrossRefGoogle Scholar
  100. 100.
    Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB (2016) Electrochemical acetylcholinesterase biosensor based on ZnO nanocuboids modified platinum electrode for the detection of carbosulfan in rice. Biosens Bioelectron 77:1070–1077CrossRefGoogle Scholar
  101. 101.
    Wu S, Lan X, Zhao W, Li Y, Zhang L, Wang H, Han M, Tao S (2011) Controlled immobilization of acetylcholinesterase on improved hydrophobic gold nanoparticle/Prussian blue modified surface for ultra-trace organophosphate pesticide detection. Biosens Bioelectron 27:82–87CrossRefGoogle Scholar
  102. 102.
    Du D, Chen S, Cai J, Zhang A (2007) Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorous insecticide. Biosens Bioelectron 23:130–134CrossRefGoogle Scholar
  103. 103.
    Turan J, Kesik M, Soylemez S, Goker S, Coskun S, Unalan HE, Toppare L (2016) An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk. Sens Actuat B 228:278–286CrossRefGoogle Scholar
  104. 104.
    Wu S, Zhang L, Qi L, Tao S, Lan X, Liu Z, Meng C (2011) Ultra-sensitive biosensor based on mesocellular silica foam for organophosphorous pesticide detection. Biosens Bioelectron 26:2864–2869CrossRefGoogle Scholar
  105. 105.
    Liu X, Li WJ, Li L, Yang Y, Mao LG (2014) Peng Z. A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine Sens Actuat B 191:408–414Google Scholar
  106. 106.
    Jia H, Guo Y, Sun X, Wang X (2015) An electrochemical immunosensor based on microfluidic Chip for detection of chlorpyrifos. Int J Electrochem Sci 10:8750–8758Google Scholar
  107. 107.
    Jin B, Xie L, Guo Y, Pang G (2012) Multi-residue detection of pesticides in juice and fruit wine: a review of extraction and detection methods. Food Res Int 46:399–409CrossRefGoogle Scholar
  108. 108.
    Anastassiades M, Lehotay J, Štajnbaher D, Schenck FJ (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int 86:412–431Google Scholar
  109. 109.
    Wilkowska A, Biziuk M (2011) Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem 125:803–812CrossRefGoogle Scholar
  110. 110.
    European Council Directive 2002/63/CE, Establishing community methods of sampling for the official control of pesticide residues in and on products of plant and animal origin and repealing Directive 79/700/EEC. Off, J. Eur. Communities (2002) L187/30–31Google Scholar
  111. 111.
    D’Ilio S, Petrucci F, D’Amato M, Di Gregorio M, Senofonte O, Violante N (2008) Method validation for determination of arsenic, cadmium, chromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry. Anal Chim Acta 624:59–67CrossRefGoogle Scholar
  112. 112.
    Arduini F, Micheli L, Moscone D, Palleschi G, Piermarini S, Ricci F, Volpe G (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: recent applications in clinical analysis. TrAC Trends Anal Chem in press. doi: 10.1016/j.trac.2016.01.032
  113. 113.
    Crew A, Lonsdale D, Byrd N, Pittson R, Hart JP (2011) A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Biosens Bioelectron 26:2847–2851CrossRefGoogle Scholar
  114. 114.
    Drechsel L, Schulz M, von Stetten F, Moldovan C, Zengerle R, Paust N (2015) Electrochemical pesticide detection with AutoDip–a portable platform for automation of crude sample analyses. Lab Chip 15:704–710CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Fabiana Arduini
    • 1
    • 2
  • Stefano Cinti
    • 1
  • Viviana Scognamiglio
    • 3
  • Danila Moscone
    • 1
    • 2
  1. 1.Dipartimento di Scienze e Tecnologie ChimicheUniversità di Roma Tor VergataRomeItaly
  2. 2.Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”RomeItaly
  3. 3.Dipartimento di Scienze Bio-AgroalimentariIstituto di Cristallografia (IC-CNR)RomeItaly

Personalised recommendations