Microchimica Acta

, Volume 183, Issue 7, pp 2163–2168 | Cite as

Sensitive chemiluminescence immunoassay for staphylococcal enterotoxin C1 based on the use of dye-encapsulated mesoporous silica nanoparticles

  • Liang Tao
  • Chunmei Zhang
  • Jinpeng Zhang
  • Yuanjie Sun
  • Xiaohua Li
  • Kuocheng Yan
  • Boquan Jin
  • Zhujun ZhangEmail author
  • Kun YangEmail author
Original Paper


A chemiluminescent immunoassay for the staphylococcal enterotoxin C1 (SEC1) based on the use of dye-encapsulated mesoporous silica nanoparticles (m-SiNPs) as a label is described. The dyes are retained in the m-SiNPs via strong hydrophobic interactions. The assay comprises the following steps: (a) Microplates coated with antibody against SEC1 are filled with sample upon which the SEC antigen will be bound to the surface; (b) following a washing step, secondary antibody linked to m-SiNPs (that were covalently labeled with rhodamine 6G and fluorescein) were added to form the sandwich complex; (c) after another washing step, bis(2,4,6-trichlorophenyl) oxalate, H2O2 and imidazole are added to generate chemiluminescence whose intensity is proportional to the number of m-SiNPs and thus to the number of antigen (SEC) molecules. It is found that the use of functionalized m-SiNPs strongly amplifies the signal. Enterotoxin SEC1 can be detected by this method in the 0.025 to 2 ng⋅mL‾1 concentration range, the detection limit is 19 pg⋅mL‾1 (at 3σ), and the relative standard deviation (for 11 parallel measurements at a 1 ng⋅mL‾1 level) is 4.6 %. The use of an automated chemiluminescence analyzer further improves detection.

Graphical Abstract

A chemiluminescent immunoassay for the staphylococcal enterotoxin C1 (SEC1) is developed based on dye-encapsulated mesoporous silica nanoparticles (m-SiNPs) and bis(2,4,6-trichlorophenyl) oxalate (TCPO)-H2O2-dyes chemiluminescent system. The advantage of this method is low detection limit to 19 pg⋅mL‾1.


Nanomaterial Sandwich immunoassay Bis(trichlorophenyloxalate) Microplate assay Bioassay Rhodamine 6G Fluorescein Staphylococcus aureus SEC1 Transmission electron microscopy 



This study was supported by the National Natural Science Foundation of China (grant 81171977 and 31500614) and China Postdoctoral Science Foundation (2014 M562598).

Supplementary material

604_2016_1849_MOESM1_ESM.docx (112 kb)
ESM 1 (DOCX 111 kb)


  1. 1.
    Lee WM (1997) Hepatitis B virus infection. N Engl J Med 337:1733CrossRefGoogle Scholar
  2. 2.
    Hedlund G, Dohlsten M, Petrsson C (1995) Superantigen induce cytokinc suppress growth of human coloncarcinomacels. Cancer Immucnol Immunother 37:89Google Scholar
  3. 3.
    Dohlsten M, Sundstedt A, Bjorklund M (1993) Superantigen-induced cytokines suppress growth of human colon-carcinoma cells. Cancer 54:482Google Scholar
  4. 4.
    White J, Herman A, Pullen AM (1989) The v beta specific superantigen staphylococcal enterotoxin B: stimulation of mature t cells and clonal deletion in neonatal mice. Cell 56:27CrossRefGoogle Scholar
  5. 5.
    Bohach GA, Kreiswirth BN, Novick RP, Schlievert PM (1989) Analysis of toxic shock syndrome isolates producing staphylococcal enterotoxins B and C1 with use of southern hybridization and immunologic assays. Rev Infect Dis 11(Suppl 1):S75CrossRefGoogle Scholar
  6. 6.
    Bohach GA, Fast DJ, Nelson RD, Schlievert PM (1990) Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol 17:251CrossRefGoogle Scholar
  7. 7.
    Zorgani A, Essery SD, Madani OA, Bentley AJ, James VS, MacKenzie DA, Keeling JW, Rambaud C, Hilton J, Blackwell CC (1999) Detection of pyrogenic toxins of Staphylococcus aureus in sudden infant death syndrome. FEMS Immunol Med Microbiol 25:103CrossRefGoogle Scholar
  8. 8.
    Mäntynen V, Niemelä S, Kaijalainen S, Pirhonen T, Lindström KV (1997) MPN-PCR-quantification method for staphylococcal enterotoxin c1 gene from fresh cheese. Int J Food Microbiol 36:135CrossRefGoogle Scholar
  9. 9.
    Giletto A, Fyffe JG (1998) A novel ELISA format for the rapid and sensitive detection of staphylococcal enterotoxin A. Biosci Biotechnol Biochem 62:2217CrossRefGoogle Scholar
  10. 10.
    Kientz CE, Hulst AG, Wils ER (1997) Determination of staphylococcal enterotoxin B by on-line (micro) liquid chromatography-electrospray mass spectrometry. J Chromatogr A 757(1–2):51CrossRefGoogle Scholar
  11. 11.
    Rasooly A, Ito Y (1999) Toroidal coil countercurrent chromatography separation and analysis of staphylococcal enterotoxin A (SEA) in milk. J Liq Chromatogr Relat Technol 22:1285CrossRefGoogle Scholar
  12. 12.
    Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377(3):469CrossRefGoogle Scholar
  13. 13.
    Rowe-Taitt CA, Golden JP, Feldstein MJ, Cras JJ, Hoffman KE, Ligler FS (2000) Array biosensor for detection of biohazards. Biosens Bioelectron 14:785CrossRefGoogle Scholar
  14. 14.
    Dong S, Luo G, Feng J, Li Q, Gao H (2001) Immunoassay of staphylococcal enterotoxin C1 by FTIR spectroscopy and electrochemical gold electrode. Electroanalysis 13:30CrossRefGoogle Scholar
  15. 15.
    Goldman ER, Balighian ED, Mattoussi H, Kuno MK, Mauro JM, Tran PT, Anderson GP (2002) Avidin: a natural bridge for quantum dot-antibody conjugates. J Am Chem Soc 124:6378CrossRefGoogle Scholar
  16. 16.
    Lin HC, Tsai WC (2003) Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B. Biosens Bioelectron 18:1479CrossRefGoogle Scholar
  17. 17.
    Luo LR, Zhang ZJ, Chen LJ, Ma LF (2006) Chemiluminescent imaging detection of staphylococcal enterotoxin C1 in milk and water samples. Food Chem 97:355CrossRefGoogle Scholar
  18. 18.
    Hun X, Zhang ZJ (2007) A novel sensitive staphylococcal enterotoxin C1 fluoroimmunoassay based on functionalized fluorescent core-shell nanoparticle labels. Food Chem 105:1623CrossRefGoogle Scholar
  19. 19.
    Huang Y, Zhang H, Chen X, Wang X, Duan N, Wu S, Xu B, Wang Z (2015) A multicolor time-resolved fluorescence aptasensor for the simultaneous detection of multiplex Staphylococcus aureus enterotoxins in the milk. Biosens Bioelectron 74:170CrossRefGoogle Scholar
  20. 20.
    Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17:4577CrossRefGoogle Scholar
  21. 21.
    Yiu HHP, Wright PA (2005) Enzymes supported on ordered mesoporous solids: a special case of an inorganic–organic hybrid. J Mater Chem 15:3690CrossRefGoogle Scholar
  22. 22.
    Lei C, Soares TA, Shin Y, Liu J, Ackerman EJ (2008) Enzyme specific activity in functionalized nanoporous supports. Nanotechnology 19:125102CrossRefGoogle Scholar
  23. 23.
    Vinu A, Miyahara M, Ariga K (2006) Assemblies of biomaterials in mesoporous media. J Nanosci Nanotechnol 6:1510CrossRefGoogle Scholar
  24. 24.
    Liu W, Ma C, Yang H, Zhang Y, Yan M, Ge S, Song X (2014) Electrochemiluminescence immunoassay using a paper electrode incorporating porous silver and modified with mesoporous silica nanoparticles functionalized with blue-luminescent carbon dots. Microchim Acta 181(11–12):1415CrossRefGoogle Scholar
  25. 25.
    Roda A, Mirasoli M, Roda B, Bonvicini F, Colliva C, Reschiglian P (2012) Recent developments in rapid multiplexed bioanalytical methods for foodborne pathogenic bacteria detection. Microchim Acta 178:7CrossRefGoogle Scholar
  26. 26.
    Bamrungsap S, Apiwat C, Chantima W, Dharakul T, Wiriyachaiporn N (2014) Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchim Acta 181(1–2):223CrossRefGoogle Scholar
  27. 27.
    Cho EB, Volkov DO, Sokolov I (2010) Ultrabright fluorescent mesoporous silica nanoparticles. Small 6:2314CrossRefGoogle Scholar
  28. 28.
    Tao L, Zhang K, Sun YJ, Jin BQ, Zhang ZJ, Yang K (2012) Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells. Biosens Bioelectron 35:186CrossRefGoogle Scholar
  29. 29.
    Tao L, Song CJ, Sun YJ, Li XH, Li YY, Jin BQ, Zhang ZJ, Yang K (2013) A fluorescent and chemiluminescent difunctional mesoporous silica nanoparticle as a label for the ultrasensitive detection of cancer cells. Anal Chim Acta 761:194CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Liang Tao
    • 1
    • 2
  • Chunmei Zhang
    • 1
  • Jinpeng Zhang
    • 3
  • Yuanjie Sun
    • 1
  • Xiaohua Li
    • 2
  • Kuocheng Yan
    • 3
  • Boquan Jin
    • 1
  • Zhujun Zhang
    • 2
    Email author
  • Kun Yang
    • 1
    Email author
  1. 1.Department of ImmunologyThe Fourth Military Medical UniversityXi’anChina
  2. 2.Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials ScienceShaanxi Normal UniversityXi’anChina
  3. 3.Brigade of CadetThe Fourth Military Medical UniversityXi’anChina

Personalised recommendations