Microchimica Acta

, Volume 183, Issue 6, pp 2023–2030 | Cite as

Amperometric xanthine biosensors using glassy carbon electrodes modified with electrografted porous silica nanomaterials loaded with xanthine oxidase

  • Maroua Saadaoui
  • Alfredo Sánchez
  • Paula Díez
  • Noureddine RaouafiEmail author
  • José M. PingarrónEmail author
  • Reynaldo VillalongaEmail author
Original Paper


Glassy carbon electrodes were modified with silica materials such as silica nanoparticles, mesoporous silica nanoparticles and mesoporous silica thin films with the aim to introduce scaffolds suitable for the immobilization of enzymes. Xanthine oxidase was selected as a model enzyme, and xanthine as the target analyte. A comparison of the modified electrodes showed the biosensor prepared with mesoporous silica nanoparticles to perform best. By using the respective biosensor, xanthine can be amperometrically determined (via measurement of enzymatically formed hydrogen peroxide) at a working voltage of 0.7 V (vs. Ag/AgCl) with a 0.28 μM detection limit. The biosensor was evaluated in terms of potential interferences, reproducibility and stability, and applied to the determination of fish freshness via sensing of xanthine.

Graphical abstract

A sensitive xanthine biosensor was built by modifying glassy carbon electrodes with mesoporous silica nanoparticles and xanthine oxidase. The silica nanochannels improve the bioelectrode performances to selectively detect the analyte over a wide range of concentrations (0.28–212 μM).


Mesoporous silica Silica nanospheres Electrografting Field–emission scanning electron microscopy Transmission electron microscopy Hexacyanoferrate Brunauer-Emmett-Teller 



Authors wish to acknowledge the financial support to this work from the Tunisian Ministry of Higher Education and Scientific Research (MHESR) and the University of Tunis El–Manar for the mobility grant (Bourse d’Alternance) awarded to MS. RV acknowledge to Ramón & Cajal contract from the Spanish Ministry of Science and Innovation. Financial support from the Spanish Ministerio de Ciencia e Innovación CTQ2011–24355, CTQ2012–34238 and Comunidad de Madrid S2013/MIT–3029, Program NANOAVANSENS are gratefully acknowledged.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_1840_MOESM1_ESM.docx (444 kb)
ESM 1 (DOCX 443 kb)


  1. 1.
    Ma HF, Chen TT, Luo Y, Kong FY, Fan DH, Fang HL, Wang W (2015) Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets. Microchim Acta 182:2001–2007CrossRefGoogle Scholar
  2. 2.
    Wang Y, Wu T, Bi CY (2015) Simultaneous determination of acetaminophen, theophylline and caffeine using a glassy carbon disk electrode modified with a composite consisting of poly(Alizarin Violet 3B), multiwalled carbon nanotubes and graphene. Microchim Acta 183:731–739CrossRefGoogle Scholar
  3. 3.
    Yu G, Zhao Q, Wu W, Wei X, Lu Q (2016) A facile and practical biosensor for choline based on manganese dioxide nanoparticles synthesized in–situ at the surface of electrode by one–step electrodeposition. Talanta 146:707–713CrossRefGoogle Scholar
  4. 4.
    Coll C, Bernardos A, Martínez–Máñez R, Sancenón F (2013) Gated silica mesoporous supports for controlled release and signaling applications. Acc Chem Res 46:339–349CrossRefGoogle Scholar
  5. 5.
    Tang L, Cheng J (2013) Nonporous silica nanoparticles for nanomedicine application. Nano Today 8:290–312CrossRefGoogle Scholar
  6. 6.
    Walcarius A (2015) Mesoporous materials–based electrochemical sensors. Electroanalysis 27:1303–1340CrossRefGoogle Scholar
  7. 7.
    Saadaoui M, Fernández I, Sánchez A, Díez P, Campuzano S, Raouafi N, Pingarrón JM, Villalonga R (2015) Mesoporous silica thin film mechanized with a DNAzyme–based molecular switch for electrochemical biosensing. Electrochem Commun 58:57–61CrossRefGoogle Scholar
  8. 8.
    Balakrishnan V, Azwana H, Abdul Razak K, Shamsuddin S (2013) In vitro evaluation of cytotoxicity of colloidal amorphous silica nanoparticles designed for drug delivery on human cell lines. J Nanomater:729306. doi: 10.1155/2013/729306
  9. 9.
    Pham H, Nguyen QP (2014) Effect of silica nanoparticles on clay swelling and aqueous stability of nanoparticle dispersions. J Nanoparticle Res 16:2137–2142CrossRefGoogle Scholar
  10. 10.
    Bottini M, Annibale FD, Magrini A, Cerignoli F, Arimura Y, Dawson MI, Bergamaschi E, Rosato N, Bergamaschi A, Mustelin T (2007) Quantum dot–doped silica nanoparticles as probes for targeting of T–lymphocytes. Int J Nanomedicine 2:227–233Google Scholar
  11. 11.
    Mao L, Yamamoto K (2000) Amperometric on–line sensor for continuous measurement of hypoxanthine based on osmium–polyvinylpyridine gel polymer and xanthine oxidase bienzyme modified glassy carbon electrode. Anal Chim Acta 415:143–150CrossRefGoogle Scholar
  12. 12.
    Boulieu R, Bory C, Baltassat P, Gonnet C (1983) Hypoxanthine and xanthine levels determined by high–performance liquid chromatography in plasma, erythrocyte, and urine samples from healthy subjects: the problem of hypoxanthine level evolution as a function of time. Anal Biochem 129:398–404CrossRefGoogle Scholar
  13. 13.
    Shihabi ZK, Hinsdale ME, Bleyer AJ (1995) Xanthine analysis in biological fluids by capillary electrophoresis. J Chromatogr B 669:163–169CrossRefGoogle Scholar
  14. 14.
    Suzuki T, Takahashi E (1975) Metabolism of xanthine and hypoxanthine in tea plants (Theasinensis L.). Biochem J 146:79–85CrossRefGoogle Scholar
  15. 15.
    Zhang J, Lei JP, Pan R, Xue YD, Ju HX (2010) Highly sensitive electrocatalytic biosensing of hypoxanthine based on functionalization of graphene sheets with water–soluble conducting graft copolymer. Biosens Bioelectron 26:371–376CrossRefGoogle Scholar
  16. 16.
    Zhang YY, Deng SY, Lei JP, QN X, HX J (2011) Carbon nanospheres enhanced electrochemiluminescence of CdS quantum dots for biosensing of hypoxanthine. Talanta 85:2154–2158CrossRefGoogle Scholar
  17. 17.
    Devi R, Yadav S, Pundir CS (2012) Au–colloids–polypyrrole nanocomposite film based xanthine biosensor. Colloids Surf A Physicochem Eng Asp 394:38–45CrossRefGoogle Scholar
  18. 18.
    Nakatani HS, Santos LV, Pelegrine CP, Gomes M, Matsushita M, Souza NE (2005) Biosensor based on xanthine oxidase for monitoring hypoxanthine in fish meat. Am J Biochem Biotechnol 1:85–89CrossRefGoogle Scholar
  19. 19.
    Devi R, Narang J, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in tea, coffee, and fish meat with graphite rod bound xanthine oxidase. J Anal Chem 67:273–277CrossRefGoogle Scholar
  20. 20.
    Xue H, Mu S (1995) Bioelectrochemical response of the polypyrrole xanthine oxidase electrode. J Electroanal Chem 39:241–247CrossRefGoogle Scholar
  21. 21.
    Liu Y, Lo N, Tao W, Yao S (2004) Amperometric study of au–colloid function on xanthine biosensor based on xanthine oxidase immobilized in polypyrrole layer. Electroanalysis 16:1271–1278CrossRefGoogle Scholar
  22. 22.
    Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181:1–22CrossRefGoogle Scholar
  23. 23.
    Gao Y, Shen C, Di J, Tu Y (2009) Fabrication of amperometric xanthine biosensors based on direct chemistry of xanthine oxidase. Mater Sci Eng C 29:2213–2216CrossRefGoogle Scholar
  24. 24.
    Dan S, Yan–Na W, Huai–Guo X, Serge C, Shou–Nian D (2009) Xanthine oxidase/laponite nanoparticles immobilized on glassy carbon electrode: direct electron transfer and multielectrocatalysis. Biosens Bioelectron 24:3556–3561CrossRefGoogle Scholar
  25. 25.
    Stöber W, Fink A (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69CrossRefGoogle Scholar
  26. 26.
    Zhao Y, Trewyn BG, Slowing II, VS–Y L (2009) Mesoporous silica nanoparticle–based double drug delivery system for glucose–responsive controlled release of insulin and cyclic AMP. J Am Chem Soc 131:8398–8400CrossRefGoogle Scholar
  27. 27.
    Walcarius A, Sibottier E, Etienne M, Ghanbaja J (2007) Electrochemically assisted self–assembly of mesoporous silica thin films. Nat Mater 6:602–608CrossRefGoogle Scholar
  28. 28.
    Devi R, Yadav S, Nehra R, Yadav S, Pundir CS (2013) Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. J Food Eng 115:207–214CrossRefGoogle Scholar
  29. 29.
    Muamer D, Esma C, Emre C, Mehmet S (2015) Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection. Food Chem 181:277–283CrossRefGoogle Scholar
  30. 30.
    Villalonga R, Matos M, Cao R (2007) Construction of an amperometric biosensor for xanthine via supramolecular associations. Electrochem Commun 9:454–458CrossRefGoogle Scholar
  31. 31.
    Coughlan MP, Rajagopalan KV, Handler P (1969) The role of molybdenum in xanthine oxidase and related enzymes. Reactivity with cyanide, arsenite, and methanol. J Biol Chem 244:2658–2663Google Scholar
  32. 32.
    Edmondson D, Massey V, Palmer G, Beacham LM (1972) The resolution of active and inactive xanthine oxidase by affinity chromatography. J Biol Chem 247:1597–1604Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.Faculty of Sciences, Department of Chemistry, Laboratory of Analytical Chemistry and Electrochemistry (LR99ES15)University of Tunis El–ManarTunis El–ManarTunisia
  2. 2.Faculty of Chemistry, Department of Analytical ChemistryComplutense University of MadridMadridSpain
  3. 3.IMDEA NanoscienceCampus University of CantoblancoMadridSpain

Personalised recommendations