Microchimica Acta

, Volume 183, Issue 6, pp 1899–1907 | Cite as

Synthesis of yellow fluorescent carbon dots and their application to the determination of chromium(III) with selectivity improved by pH tuning

  • Melissa May Fung Chang
  • Irine Runnie Ginjom
  • Maria Ngu-Schwemlein
  • Sing Muk Ng
Original Paper


Carbon dots with yellow fluorescence (y-CDs) were synthesized from sucrose by acid carbonization with phosphoric acid as the dehydrating agent. Optimal yield was obtained by heating sucrose in concentrated phosphoric acid to 85 °C for 30 min. The resulting y-CDs under the photo-excitation at 360 nm display an emission band peaking at 560 nm. The fluorescence is independent of pH values in the range from pH 4.0 to 11.4, and at ionic strengths of up to 4.7 M of potassium chloride. We also show that these y-CDs are viable fluorescent probes for the detection of chromium(III). At near neutral pH conditions, several metal ions quench the emission of the y-CDs, but under acidic conditions (pH 4), fluorescence is strongly affected by Cr(III) only. Quenching depends on the concentration of Cr(III) in the range up to 200 μM, and the limit of detection is 24.6 μM.

Graphical Abstract

Yellow fluorescent carbon dots, denoted as y-CDs, were synthesised through acid carbonisation of sucrose with concentrated phosphoric acid. The y-CDs, if excited at 360 nm, display an emission band peaking at 560 nm. These y-CDs are viable fluorescent probes for determination of chromium(III) with better selectivity under acidic conditions.


Optical probe Nanoprobe Fluorescence Quenching Water analysis Carbonization 



We would like to extend our gratitude to the laboratory technicians and colleagues of Swinburne University of Technology Sarawak Campus for their continuous support and guidance. Special thanks to Ms. Jessica Fong and Ms. Ng Yann Huey for their valuable help and contribution in the experimental study of this work. Financial support was provided by Swinburne University of Technology Sarawak Campus through the Swinburne Sarawak Research Grant, Phase 1/2013 (2-5509).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2016_1819_MOESM1_ESM.docx (228 kb)
ESM 1 (DOCX 228 kb)


  1. 1.
    Baker SN, Baker GA (2010) Luminescent Carbon Nanodots: Emergent Nanolights. Angew Chem Int Ed 49(38):6726–6744. doi: 10.1002/anie.200906623 CrossRefGoogle Scholar
  2. 2.
    Li H, Kang Z, Liu Y, Lee S-T (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22(46):24230–24253. doi: 10.1039/C2JM34690G CrossRefGoogle Scholar
  3. 3.
    Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C 2(34):6921–6939. doi: 10.1039/C4TC00988F CrossRefGoogle Scholar
  4. 4.
    Tan XW, Romainor ANB, Chin SF, Ng SM (2014) Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J Anal Appl Pyrolysis 105 (0):157–165. doi: 10.1016/j.jaap.2013.11.001
  5. 5.
    Wee SS, Ng YH, Ng SM (2013) Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 116:71–76. doi: 10.1016/j.talanta.2013.04.081 CrossRefGoogle Scholar
  6. 6.
    Jana J, Ganguly M, Das B, Dhara S, Negishi Y, Pal T (2016) One pot synthesis of intriguing fluorescent carbon dots for sensing and live cell imaging. Talanta 150:253–264. doi: 10.1016/j.talanta.2015.12.047 CrossRefGoogle Scholar
  7. 7.
    Xue M, Zhang L, Zhan Z, Zou M, Huang Y, Zhao S (2016) Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging. Talanta 150:324–330. doi: 10.1016/j.talanta.2015.12.024 CrossRefGoogle Scholar
  8. 8.
    Liu Y, Liao M, He X, Liu X, Kou X, Xiao D (2015) One-step synthesis of highly luminescent nitrogen-doped carbon dots for selective and sensitive detection of mercury(ii) ions and cellular imaging. Anal Sci 31(10):971–977CrossRefGoogle Scholar
  9. 9.
    Yang M, Kong W, Li H, Liu J, Huang H, Liu Y, Kang Z (2015) Fluorescent carbon dots for sensitive determination and intracellular imaging of zinc(II) ion. Microchim Acta 182(15–16):2443–2450. doi: 10.1007/s00604-015-1592-7 CrossRefGoogle Scholar
  10. 10.
    Ahmed GHG, Laíño RB, Calzón JAG, García MED (2015) Highly fluorescent carbon dots as nanoprobes for sensitive and selective determination of 4-nitrophenol in surface waters. Microchim Acta 182(1–2):51–59. doi: 10.1007/s00604-014-1302-x CrossRefGoogle Scholar
  11. 11.
    Fang Y, Guo S, Li D, Zhu C, Ren W, Dong S, Wang E (2012) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6(1):400–409. doi: 10.1021/nn2046373 CrossRefGoogle Scholar
  12. 12.
    Zuo P, Lu X, Sun Z, Guo Y, He H (2015) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchimica Acta 183(2): 519–542. doi: 10.1007/s00604-015-1705-3
  13. 13.
    Xu Z-Q, Yang L-Y, Fan X-Y, Jin J-C, Mei J, Peng W, Jiang F-L, Xiao Q, Liu Y (2014) Low temperature synthesis of highly stable phosphate functionalized two color carbon nanodots and their application in cell imaging. Carbon 66:351–360. doi: 10.1016/j.carbon.2013.09.010 CrossRefGoogle Scholar
  14. 14.
    Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Scientific reports 3:1473. doi: 10.1038/srep01473 CrossRefGoogle Scholar
  15. 15.
    Wang L, Zhu S-J, Wang H-Y, Qu S-N, Zhang Y-L, Zhang J-H, Chen Q-D, Xu H-L, Han W, Yang B, Sun H-B (2014) Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots. ACS Nano 8(3):2541–2547. doi: 10.1021/nn500368m CrossRefGoogle Scholar
  16. 16.
    Zhu S, Wang L, Li B, Song Y, Zhao X, Zhang G, Zhang S, Lu S, Zhang J, Wang H, Sun H, Yang B (2014) Investigation of photoluminescence mechanism of graphene quantum dots and evaluation of their assembly into polymer dots. Carbon 77:462–472. doi: 10.1016/j.carbon.2014.05.051 CrossRefGoogle Scholar
  17. 17.
    Mao X-J, Zheng H-Z, Long Y-J, Du J, Hao J-Y, Wang L-L, Zhou D-B (2010) Study on the fluorescence characteristics of carbon dots. Spectrochim Acta A Mol Biomol Spectrosc 75(2):553–557. doi: 10.1016/j.saa.2009.11.015 CrossRefGoogle Scholar
  18. 18.
    Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An Aqueous Route to Multicolor Photoluminescent Carbon Dots Using Silica Spheres as Carriers. Angew Chem Int Ed 48(25):4598–4601. doi: 10.1002/anie.200900652 CrossRefGoogle Scholar
  19. 19.
    Vandamme E, Soetaert W (2004) Industrial Biotechnology and Sustainable Chemistry. Royal Belgian Academy Council of Applied Science, BACAS-reportGoogle Scholar
  20. 20.
    McCartor A, Becker D (2010) World's Worst Pollution Problems 2010. Blacksmith Institution, New YorkGoogle Scholar
  21. 21.
    Fazil MI, Iqbal MA, Abdullah S (2012) A study on heavy metal ion contamination of groundwater reserves in Beed City, Maharashtra, India. Bulletin of Environment, Pharmacology and Life Sciences 1(8):18–21Google Scholar
  22. 22.
    Ali I, Aboul-Enein HY (2006) Instrumental Methods in Metal Ion Speciation. CRC Press, FloridaGoogle Scholar
  23. 23.
    Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Microchim Acta 126 (3-4):177–192. doi: 10.1007/BF01242319
  24. 24.
    Brouwer Albert M (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem 83(12):2213–2888. doi: 10.1351/PAC-REP-10-09-31
  25. 25.
    Robinson RA, Stokes RH (1965) Electrolyte Solutions: The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes, by R. A. Robinson and R. H. Stokes. Butterworths [1965, reprinted 1970]Google Scholar
  26. 26.
    Luo Z, Lu Y, Somers LA, Johnson ATC (2009) High Yield Preparation of Macroscopic Graphene Oxide Membranes. J Am Chem Soc 131(3):898–899. doi: 10.1021/ja807934n CrossRefGoogle Scholar
  27. 27.
    Puziy AM, Poddubnaya OI, Martı́nez-Alonso A, Suárez-Garcı́a F, JMD T (2002) Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon 40(9):1493–1505. doi: 10.1016/S0008-6223(01)00317-7 CrossRefGoogle Scholar
  28. 28.
    Puziy AM, Poddubnaya OI, Martı́nez-Alonso A, Suárez-Garcı́a F, JMD T (2003) Synthetic carbons activated with phosphoric acid III. Carbons prepared in air. Carbon 41(6):1181–1191. doi: 10.1016/S0008-6223(03)00031-9 CrossRefGoogle Scholar
  29. 29.
    Puziy AM, Poddubnaya OI, Martínez-Alonso A, Suárez-García F, Tascón JMD (2005) Surface chemistry of phosphorus-containing carbons of lignocellulosic origin. Carbon 43(14):2857–2868. doi: 10.1016/j.carbon.2005.06.014 CrossRefGoogle Scholar
  30. 30.
    Castro Muñiz A, Díez Tascón JM, Martínez Alonso A, Poddubnaya OI, Puziy AM, Suárez García F (2007) Oxygen and phosphorus enriched carbons from lignocellulosic material. Carbon 45:1941–1950CrossRefGoogle Scholar
  31. 31.
    Puziy AM, Poddubnaya OI, Gawdzik B, Sobiesiak M, Tsyba MM (2007) Phosphoric acid activation—Functionalization and porosity modification. Appl Surf Sci 253(13):5736–5740. doi: 10.1016/j.apsusc.2006.12.034 CrossRefGoogle Scholar
  32. 32.
    Puziy AM, Poddubnaya OI, Ziatdinov AM (2006) On the chemical structure of phosphorus compounds in phosphoric acid-activated carbon. Appl Surf Sci 252(23):8036–8038. doi: 10.1016/j.apsusc.2005.10.044 CrossRefGoogle Scholar
  33. 33.
    Hu Y, Yang J, Tian J, Jia L, Yu J-S (2014) Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence. Carbon 77 (0):775–782. doi: 10.1016/j.carbon.2014.05.081
  34. 34.
    Liu H, Ye T, Mao C (2007) Fluorescent Carbon Nanoparticles Derived from Candle Soot. Angew Chem Int Ed 46(34):6473–6475. doi: 10.1002/anie.200701271 CrossRefGoogle Scholar
  35. 35.
    Sasaki S, De Franceschi S, Elzerman JM, van der Wiel WG, Eto M, Tarucha S, Kouwenhoven LP (2000) Kondo effect in an integer-spin quantum dot. Nature 405(6788):764–767CrossRefGoogle Scholar
  36. 36.
    Yau A (2011) Vegetables and chromium contamination. Food Safety Focus (63)- Incident in Focus, Centre for Food Safety, The Government of the Hong Kong Special Administrative Region, Hong KongGoogle Scholar
  37. 37.
    National Research Council (1989) Recommended dietary allowances 10th edn. National Academy of Sciences, Washington, DCGoogle Scholar
  38. 38.
    Grevatt, P.C. (1998) Toxicological Review of Trivalent Chromium. Integrated Risk Information System (IRIS), U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  39. 39.
    U.S. Department of Health and Human Services, Food and Drug Administration (1995) Food labeling: reference daily intakes. Federal Register Volume 60, Issue 249 Office of the Federal Register, National Archives and Records AdministrationGoogle Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  • Melissa May Fung Chang
    • 1
    • 2
  • Irine Runnie Ginjom
    • 1
    • 2
  • Maria Ngu-Schwemlein
    • 3
  • Sing Muk Ng
    • 1
    • 2
  1. 1.Faculty of Engineering, Computing and ScienceSwinburne University of Technology Sarawak CampusKuchingMalaysia
  2. 2.Swinburne Sarawak Research Centre for Sustainable TechnologiesSwinburne University of Technology Sarawak CampusKuchingMalaysia
  3. 3.Chemistry DepartmentWinston-Salem State UniversityWinston-SalemUSA

Personalised recommendations