Microchimica Acta

, Volume 183, Issue 3, pp 1033–1054 | Cite as

Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review

  • Ghenadii Korotcenkov
  • Vladimir Brinzari
  • Beong K. Cho
Review Article


This review (with 170 refs.) discusses approaches towards surface functionalizaton of metal oxides by gold nanoparticles, and the application of the resulting nanomaterials in resistive gas sensors. The articles is subdivided into sections on (a) methods for modification of metal oxides with gold nanoparticles; (b) the response of gold nanoparticle-modified metal oxide sensors to gaseous species, (c) a discussion of the limitations of such sensors, and (d) a discussion on future tasks and trends along with an outlook. It is shown that, in order to achieve significant improvements in sensor parameters, it is necessary to warrant a good control the size and density of gold nanoparticles on the surface of metal oxide crystallites, the state of gold in the cluster, and the properties of the metal oxide support. Current challenges include an improved reproducibility of sensor preparation, better long-term stabilities, and a better resistance to sintering and poisoning of gold clusters during operation. Additional research focused on better understanding the role of gold clusters and nanoparticles in gas-sensing effects is also required.

Graphical Abstract

The Figure illustrates the growth in the number of publications devoted to the analysis of gas-sensitive properties of metal oxides modified by gold nanoparticles and shows SEM image of SnO2 films modified with gold nanoparticles.


Surface functionalizaton Stability Chloroauric acid Carbon monoxide Catalysis Cluster size Hydrogen Recovery time Operation temperature Spillover Oxygen Sensitization mechanism 



This work was supported by the Ministry of Science, ICT and Future Planning (MSIP) of the Republic of Korea, by the National Research Foundation (NRF) grants funded by the MSIP of Korea (Bank for Quantum Electronic Materials, Nos. 2011-0028736 and 2013-K000315), and partly by the Moldova Government under grant 15.817.02.29F and ASM-STCU project #5937.

Compliance With Ethical Standards

The author(s) declare that they have no competing interests


  1. 1.
    Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36(1):153–166CrossRefGoogle Scholar
  2. 2.
    Valden M, Pak S, Lai X, Goodman DW (1998) Structure sensitivity of CO oxidation over model Au/TiO2 catalysts. Catal Lett 56:7–10CrossRefGoogle Scholar
  3. 3.
    Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–406CrossRefGoogle Scholar
  4. 4.
    Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41(3–4):319–388CrossRefGoogle Scholar
  5. 5.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  6. 6.
    Carabineiro SAC, Thompson DT (2007) Catalytic applications for gold nanotechnology. In: Heiz U, Landman U (eds) Nanocatalysis (Nanoscience and Technology series). Springer, Berlin, pp 377–489CrossRefGoogle Scholar
  7. 7.
    Prati L, Villa A (2012) The art of manufacturing gold catalysts. Catalysts 2:24–37CrossRefGoogle Scholar
  8. 8.
    Pattrick G, van der Lingen E, Corti CW, Holliday RJ, Thompson DT (2004) The potential for use of gold in automotive pollution control technologies: a short review. Top Catal 30/31:273–279CrossRefGoogle Scholar
  9. 9.
    Chen G, Takezawa M, Kawazoe N, Tateishi T (2008) Preparation of cationic gold nanoparticles for gene delivery. Open Biotechnol J 2:152–156CrossRefGoogle Scholar
  10. 10.
    Valcarcel M, Lopez-Lorente AI (eds) (2014) Gold nanoparticles in analytical chemistry (Comprehensive analytical chemistry series, vol. 66, edited by D. Barcelo). Elsevier, AmsterdamGoogle Scholar
  11. 11.
    Wilso R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045CrossRefGoogle Scholar
  12. 12.
    Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22CrossRefGoogle Scholar
  13. 13.
    Dang X, Hu H, Wang S, Hu S (2015) Nanomaterials-based electrochemical sensors for nitric oxide. Microchim Acta 182:455–467CrossRefGoogle Scholar
  14. 14.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Chu W, Foroushani AD, Wang H, Li D, Liu J, Barrow CJ, Wang X, Yang W (2014) New gold nanostructures for sensor applications: a review. Materials 7:5169–5201CrossRefGoogle Scholar
  16. 16.
    Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41CrossRefGoogle Scholar
  17. 17.
    Yusoff N, Pandikumar A, Ramaraj R, Lim HN, Huang NM (2015) Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182:2091–2114CrossRefGoogle Scholar
  18. 18.
    Ohodnicki PR Jr, Brown TD, Holcomb GR, Tylczak J, Schultz AM, Baltrus JP (2014) High temperature optical sensing of gas and1 temperature using Au-nanoparticle incorporated oxides. Sens Actuators B 202:489–499CrossRefGoogle Scholar
  19. 19.
    Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32CrossRefGoogle Scholar
  20. 20.
    Tang J, Tang D (2015) Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review. Microchim Acta 182:2077–2089CrossRefGoogle Scholar
  21. 21.
    Moseley PT, Tofield BC (eds) (1987) Solid state gas sensors. Adam Hilger, BristolGoogle Scholar
  22. 22.
    Sberveglieri G (ed) (1992) Gas sensors: principles, operation and developments. Kluwer, DordrechtGoogle Scholar
  23. 23.
    Baltes H, Gopel W, Hesse J (eds) (1996–203) Sensors update, vols. 1–13. Wiley-VCH Verlag, WeinheimGoogle Scholar
  24. 24.
    Comini E, Faglia G, Sberveglieri G (eds) (2009) Solid state gas sensing. Springer, BerlinGoogle Scholar
  25. 25.
    Korotcenkov G (ed) (2010–2014) Chemical sensors, vols. 1–11. Momentum Press, New YorkGoogle Scholar
  26. 26.
    Korotcenkov G (2014) Handbook of gas sensor materials. Springer, New YorkCrossRefGoogle Scholar
  27. 27.
    Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report. Fresenius J Anal Chem 365:287–304CrossRefGoogle Scholar
  28. 28.
    Brynzari V, Korotchenkov G, Dmitriev S (2000) Theoretical study of semiconductor thin film gas sensitivity: attempt to consistent approach. J Electron Technol 33:225–235Google Scholar
  29. 29.
    Barsan N, Weimar U (2001) Conduction model of metal oxide gas sensors. J Electroceram 7:143–167CrossRefGoogle Scholar
  30. 30.
    Barsan N, Weimar U (2003) Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J Phys Condens Matter 15:R813–R829CrossRefGoogle Scholar
  31. 31.
    Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sensors Actuators B 121:18–35CrossRefGoogle Scholar
  32. 32.
    Gurlo A (2006) Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. ChemPhysChem 7:2041–2052CrossRefGoogle Scholar
  33. 33.
    Korotcenkov G (2007) Metal oxides for solid state gas sensors: what determines our choice? Mater Sci Eng B 139:1–23CrossRefGoogle Scholar
  34. 34.
    James D, Scott SM, Ali Z, O’Hare WT (2005) Chemical sensors for electronic nose systems. Microchim Acta 149:1–17CrossRefGoogle Scholar
  35. 35.
    Yamazoe N (1991) New approaches for improving semiconductor gas sensors. Sensors Actuators B 5:7–19CrossRefGoogle Scholar
  36. 36.
    Korotcenkov G (2005) Gas response control through structural and chemical modification of metal oxides: state of the art and approaches. Sensors Actuators B 107:209–232CrossRefGoogle Scholar
  37. 37.
    Krivetskiy V, Ponzoni A, Comini E, Badalyan S, Rumyantseva M, Gaskov A (2010) Selectivity modification of SnO2-based materials for gas sensor arrays. Electroanalysis 22(23):2809–2816CrossRefGoogle Scholar
  38. 38.
    Ma Y, Qu Y, Zhou W (2013) Surface engineering of one-dimensional tin oxide nanostructures for chemical sensors. Microchim Acta 180:1181–1200CrossRefGoogle Scholar
  39. 39.
    Korotcenkov G, Cho BK (2013) Engineering approaches to improvement operating characteristics of conductometric gas sensors. Part 1: improvement of sensor sensitivity and selectivity. Sensors Actuators B 188:709–728CrossRefGoogle Scholar
  40. 40.
    Grisel RJH, Nieuwenhuys BE (2001) Selective oxidation of CO, over supported Au catalysts. J Catal 199:48–59CrossRefGoogle Scholar
  41. 41.
    Neri G, Bonavita A, Galvano S, Caputi L, Pacile D, Marsico R, Papagno L (2001) HREELS study of Au/Fe2O3 thick film gas sensors. Sensors Actuators B 80:222–228CrossRefGoogle Scholar
  42. 42.
    Buso D, Post M, Cantalini C, Mulvaney P, Martucci A (2008) Gold nanoparticle-doped TiO2 semiconductor thin films: gas sensing properties. Adv Funct Mater 18:3843–3849CrossRefGoogle Scholar
  43. 43.
    Ruiz AM, Cornet A, Shimanoe K, Morante JR, Yamazoe N (2005) Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sensors Actuators B 108:34–40CrossRefGoogle Scholar
  44. 44.
    Chomkitichai W, Tamaekong N, Liewhiran C, Wisitsoraat A, Sriwichai S, Phanichphant S (2012) H2 sensor based on Au/TiO2 nanoparticles synthesized by flame spray pyrolysis. Eng J 16(3):135–142CrossRefGoogle Scholar
  45. 45.
    Xu X, Fan H, Liu Y, Wang L, Zhang T (2011) Au-loaded In2O3 nanofibers-based ethanol micro gas sensor with low power consumption. Sensors Actuators B 160:713–719CrossRefGoogle Scholar
  46. 46.
    Katoch A, Byun J-H, Choi S-W, Kim SS (2014) One-pot synthesis of Au-loaded SnO2 nanofibers and their gas sensing properties. Sensors Actuators B 202:38–45CrossRefGoogle Scholar
  47. 47.
    Rai P, Kim Y-S, Song H-M, Song M-K, Yu Y-T (2012) The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sensors Actuators B 165:133–142CrossRefGoogle Scholar
  48. 48.
    Zhang J, Liu X, Wu S, Xu M, Guo X, Wang S (2010) Au nanoparticle-decorated porous SnO2 hollow spheres: a new model for a chemical sensor. J Mater Chem 20:6453–6459CrossRefGoogle Scholar
  49. 49.
    Labidi A, Gillet E, Delamare R, Maaref M, Aguir K (2006) Ethanol and ozone sensing characteristics of WO3 based sensors activated by Au and Pd. Sensors Actuators B 120:338–345CrossRefGoogle Scholar
  50. 50.
    Qian LH, Wang K, Fang HT, Lia Y, Ma XL (2007) Au nanoparticles enhance CO oxidation onto SnO2 nanobelt. Mater Chem Phys 103:132–136CrossRefGoogle Scholar
  51. 51.
    Nelli P, Faglia G, Sberveglieri G, Cereda E, Gabetta G, Dieguez A, Romano-Rodriguez A, Morante JR (2000) The aging effect on SnO2-Au thin film sensors: electrical and structural characterization. Thin Solid Films 371:249–253CrossRefGoogle Scholar
  52. 52.
    Rai P, Khan R, Raj S, Majhi SM, Park K-K, Yu Y-T, Lee I-H, Sekhar PK (2014) Au@Cu2O core–shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance. Nanoscale 6:581–588CrossRefGoogle Scholar
  53. 53.
    Wang L, Dou H, Lou Z, Zhang T (2013) Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 5:2686–2691CrossRefGoogle Scholar
  54. 54.
    Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Synthesis of thermally stable monodispersed Au@SnO2 core–shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5:1456–1462CrossRefGoogle Scholar
  55. 55.
    Chung F-C, Wu R-J, Cheng F-C (2014) Fabrication of an Au@SnO2 core–shell structure for gaseous formaldehyde sensing at room temperature. Sensors Actuators B 190:1–7CrossRefGoogle Scholar
  56. 56.
    Kim S, Park S, Park S, Lee C (2015) Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sensors Actuators B 209:180–185CrossRefGoogle Scholar
  57. 57.
    Korotcenkov G, Gulina LB, Cho BK, Brinzari V, Tolstoy VP (2014) Synthesis by successive ionic layer deposition (SILD) methodology and characterization of gold nanoclusters on the surface of the tin and indium oxide films. Pure Appl Chem 86(5):801–817CrossRefGoogle Scholar
  58. 58.
    Korotcenkov G, Brinzari V, Cho BK (2015) What restricts gold clusters reactivity in catalysis and gas sensing effects: a focused review. Mater Lett 147:101–104CrossRefGoogle Scholar
  59. 59.
    Manjula P, Arunkumar S, Manorama SV (2011) Au/SnO2 an excellent material for room temperature carbon monoxide sensing. Sensors Actuators B 152:168–175CrossRefGoogle Scholar
  60. 60.
    Cabot A, Arbiol J, Morante JR, Weimar U, Barsan N, Gopel W (2000) Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sensors Actuators B 70:87–100CrossRefGoogle Scholar
  61. 61.
    Kobayashi T, Haruta M, Sano H, Nakane M (1988) A selective CO sensor using Ti-doped α-Fe2O3 with coprecipitated ultrafine particles of gold. Sensors Actuators 13:339–349CrossRefGoogle Scholar
  62. 62.
    Singh N, Gupta RK, Lee PS (2011) Gold-nanoparticle-functionalized In2O3 nanowires as CO gas sensors with a significant enhancement in response. ACS Appl Mater Interfaces 3:2246–2252CrossRefGoogle Scholar
  63. 63.
    Jońca J, Ryzhikov A, Fajerwerg K, Kahn ML, Chaudret B, Chapelle A, Menini P, Fau P (2014) A novel SnO2 sensor and its selectivity improvement with catalytic filter. Procedia Eng 87:923–926CrossRefGoogle Scholar
  64. 64.
    Korotcenkov G, Cho BK, Brinzari V, Gulina L, Tolstoy V (2014) Catalytically active filters deposited by SILD method for inhibitting sensitivity to ozone of SnO2-based conductometric gas sensors. Ferroelectrics 459(1):46–51CrossRefGoogle Scholar
  65. 65.
    Korotcenkov G (2008) The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater Sci Eng R 61:1–39CrossRefGoogle Scholar
  66. 66.
    Wang S, Zhao Y, Huang J, Wang Y, Ren H, Wu S, Zhang S, Huang W (2007) Low-temperature CO gas sensors based on Au/SnO2 thick film. Appl Surf Sci 253:3057–3061CrossRefGoogle Scholar
  67. 67.
    Zhuiykov S (2008) Carbon monoxide detection at low temperatures by semiconductor sensor with nanostructured Au-doped CoOOH films. Sensors Actuators B 129:431–441CrossRefGoogle Scholar
  68. 68.
    Xiang Q, Meng GF, Zhao HB, Zhang Y, Li H, Ma WJ, Xu JQ (2010) Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J Phys Chem C 114:2049–2055CrossRefGoogle Scholar
  69. 69.
    Yin L, Chen D, Fan B, Lu H, Wang H, Xu H, Yang D, Shao G, Zhang R (2013) Enhanced selective response to nitric oxide (NO) of Au-modified tungsten trioxide nanoplates. Mater Chem Phys 143:461–469CrossRefGoogle Scholar
  70. 70.
    Maekawa T, Tamaki J, Yamazoe N (1992) Gold-load tungsten oxide sensor for detection of ammonia in air. Chem Lett 4:639–642CrossRefGoogle Scholar
  71. 71.
    Sung J-H, Lee Y-S, Lim J-W, Hong Y-H, Lee D-D (2000) Sensing characteristics of tin dioxide/gold sensor prepared by coprecipitation method. Sensors Actuators B 66:149–152CrossRefGoogle Scholar
  72. 72.
    Ramgir NS, Sharma PK, Kaur NDM, Debnath AK, Aswal DK, Gupta SK (2013) Room temperature H2S sensor based on Au modified ZnO nanowires. Sensors Actuators B 186:718–726CrossRefGoogle Scholar
  73. 73.
    Xia H, Wang Y, Kong F, Wang S, Zhu B, Guo X, Zhang J, Wang Y, Wu S (2008) Au-doped WO3-based sensor for NO2 detection at low operating temperature. Sensors Actuators B 134:133–139CrossRefGoogle Scholar
  74. 74.
    Belysheva TV, Kazachkov EA, Gutman EE (2001) Gas sensing properties of In2O3 and Au-doped In2O3 films for detecting carbon monoxide in air. J Anal Chem 56(7):676–678CrossRefGoogle Scholar
  75. 75.
    Korotcenkov G, Cho BK (2014) Bulk doping influence on the response of conductometric SnO2 gas sensors: understanding through cathodoluminescence study. Sensors Actuators B 196:80–98CrossRefGoogle Scholar
  76. 76.
    Choudhary TV, Goodman DW (2005) Catalytically active gold: the role of cluster morphology. Appl Catal A 291:32–36CrossRefGoogle Scholar
  77. 77.
    Korotcenkov G, Brinzari V, Gulina L, Cho BK (2015) The influence of gold nanoparticles on the conductivity response of SnO2-based thin film gas sensors. Appl Surf Sci 353:793–803CrossRefGoogle Scholar
  78. 78.
    Wen X, Wang M, Wang C, Jiang J (2011) Electroless plated SnO2–Pd–Au composite thin film for room temperature H2 detection. Electrochim Acta 56:6524–6529CrossRefGoogle Scholar
  79. 79.
    Wallace WT, Min BK, Goodman DW (2005) The stabilization of supported gold clusters by surface defects. J Mol Catal A Chem 228:3–10CrossRefGoogle Scholar
  80. 80.
    Visco AM, Donato A, Milone C, Galvagno S (1997) Catalytic oxidation of carbon monoxide over Au/Fe2O3 preparations. React Kinet Catal Lett 61:219–226CrossRefGoogle Scholar
  81. 81.
    Wang S, Huang J, Zhao Y, Wang S, Wang X, Zhang T, Wu S, Zhang S, Huang W (2006) Preparation, characterization and catalytic behavior of SnO2 supported Au catalysts for low-temperature CO oxidation. J Mol Catal A Chem 259:245–252CrossRefGoogle Scholar
  82. 82.
    Wagner FE, Galvano S, Milone C, Visco AM (1997) Mossbauer characterization of gold/iron oxide catalysts. J Chem Soc Faraday Trans 93:3403–3409CrossRefGoogle Scholar
  83. 83.
    Korotcenkov G, Sysoev V (2011) Conductometric metal oxide gas sensors. In: Korotcenkov G (ed) Chemical sensors: comprehensive sensor technologies. vol. 4. Solid state devices. Momentum Press, New York, pp 39–186Google Scholar
  84. 84.
    Ivanovskaya MI, Ovodok EA, Kotikov DA (2011) Gas-sensitivity properties of nanoscale Au–In2O3 materials. Russ J Gen Chem 81(10):2074–2079CrossRefGoogle Scholar
  85. 85.
    Du N, Zhang H, Ma X, Yang D (2008) Homogeneous coating of Au and SnO2 nanocrystals on carbon nanotubes via layer-by-layer assembly: a new ternary hybrid for a room-temperature CO gas sensor. Chem Commun 2008:6182–6184CrossRefGoogle Scholar
  86. 86.
    Ramgir NS, Hwang YK, Jhung SH, Kim H-K, Hwang J-S, Mulla IS, Chang J-S (2006) CO sensor derived from mesostructured Au-doped SnO2 thin film. Appl Surf Sci 252:4298–4305CrossRefGoogle Scholar
  87. 87.
    Fang W, Chen J, Zhang Q, Deng W, Wang Y (2011) Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects. Chem Eur J 17:1247–1256CrossRefGoogle Scholar
  88. 88.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650CrossRefGoogle Scholar
  89. 89.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309CrossRefGoogle Scholar
  90. 90.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–1335CrossRefGoogle Scholar
  91. 91.
    Hubner M, Koziej D, Grunwaldt J-D, Weimar U, Barsan N (2012) An Au clusters related spill-over sensitization mechanism in SnO2-based gas sensors identified by operando HERFD-XAS, work function changes, DC resistance and catalytic conversion studies. Phys Chem Chem Phys 14:13249–13254CrossRefGoogle Scholar
  92. 92.
    Wang X, Qiu S, He C, Lu G, Liu W, Liu J (2013) Synthesis of Au decorated SnO2 mesoporous spheres with enhanced gas sensing performance. RSC Adv 3:19002–19008CrossRefGoogle Scholar
  93. 93.
    Wang S, Zhao Y, Huang J, Wang Y, Kong F, Wu S, Zhang S, Huang W (2006) Preparation and CO gas-sensing behavior of Au-doped SnO2 sensors. Vacuum 81:394–397CrossRefGoogle Scholar
  94. 94.
    Qian LH, Wang K, Li Y, Fang HT, Lu QH, Ma XL (2006) CO sensor based on Au-decorated SnO2 nanobelt. Mater Chem Phys 100:82–84CrossRefGoogle Scholar
  95. 95.
    Liotta LF, Di Carlo G, Pantaleo G, Venezia AM (2010) Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: support effect. Catal Today 158:56–62CrossRefGoogle Scholar
  96. 96.
    Park S, An A, Mun Y, Lee C (2014) UV-enhanced room-temperature gas sensing of ZnGa2O4 nanowires functionalized with Au catalyst nanoparticles. Appl Phys A 114(3):903–910CrossRefGoogle Scholar
  97. 97.
    Wagner T, Kohl C-D, Malagù C, Donato N, Latino M, Nerif G, Tiemann M (2013) UV light-enhanced NO2 sensing by mesoporous In2O3: Interpretation of results by a new sensing model. Sensors Actuators B 187:488–494Google Scholar
  98. 98.
    Park S, An S, Park S, Jin C, Lee WI, Lee C (2013) Synthesis of Au-functionalized SnO2 nanotubes using TeO2 nanowires as templates and their enhanced gas sensing properties. Appl Phys A 110:471–477CrossRefGoogle Scholar
  99. 99.
    Korotcenkov G, Cho BK (2012) Ozone measuring: what can limit the application of SnO2-based gas sensors? Sensors Actuators B 161:28–44CrossRefGoogle Scholar
  100. 100.
    Lee I, Choi S-J, Park K-M, Lee SS, Choi S, Kim I-D, Park CO (2014) The stability, sensitivity and response transients of ZnO, SnO2 andWO3 sensors under acetone, toluene and H2S environments. Sensors Actuators B 197:300–307CrossRefGoogle Scholar
  101. 101.
    Zampiceni E, Faglia G, Sberveglieri G, Kaciulis S, Pandolfi L, Scavia G (2002) Thermal treatment stabilization processes in SnO2 thin films catalyzed with Au and Pt. IEEE Sensors J 2(2):102–106CrossRefGoogle Scholar
  102. 102.
    Bahrami B, Khodadadi A, Kazemeini M, Mortazavi Y (2008) Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane. Sensors Actuators B 133:352–356CrossRefGoogle Scholar
  103. 103.
    Bakrania SD, Wooldridge MS (2010) The effects of the location of Au additives on combustion-generated SnO2 nanopowders for CO gas sensing. Sensors 10:7002–7017CrossRefGoogle Scholar
  104. 104.
    Chang CM, Hon MH, Leu IC (2013) Influence of size and density of Au nanoparticles on ZnO nanorod arrays for sensing reducing gases. J Electrochem Soc 160(9):B170–B176CrossRefGoogle Scholar
  105. 105.
    Fasaki I, Suchea M, Mousdis G, Kiriakidisc G, Kompitsas M (2009) The effect of Au and Pt nanoclusters on the structural and hydrogen sensing properties of SnO2 thin films. Thin Solid Films 518:1109–1113CrossRefGoogle Scholar
  106. 106.
    Korotcenkov G, Brinzari V, Han SH, Gulina LB, Tolstoy VP, Cho BK (2015) SnO2 films decorated by Au clusters and their gas sensing properties. Mater Sci Forum 827:251–256CrossRefGoogle Scholar
  107. 107.
    Ahmad MZ, Golovko VB, Adnan RH, Bakar FA, Ruzicka J-Y, Anderson DP, Andersson GG, Wlodarski W (2013) Hydrogen sensing using gold nanoclusters supported on tungsten trioxide thin films. Int J Hydrog Energy 38:12865–12877CrossRefGoogle Scholar
  108. 108.
    Montmeat P, Marchand J-C, Lalauze R, Viricelle J-P, Tournier G, Pijolat C (2003) Physico-chemical contribution of gold metallic particles to the action of oxygen on tin dioxide sensors. Sensors Actuators B 95:83–89CrossRefGoogle Scholar
  109. 109.
    Zhang X, Yu L, Tie J, Dong X (2014) Gas sensitivity and sensing mechanism studies on Au-doped TiO2 nanotube arrays for detecting SF6 decomposed components. Sensors 14:19517–19532CrossRefGoogle Scholar
  110. 110.
    Choi S-W, Jung S-H, Kim SS (2011) Significant enhancement of the NO2 sensing capability in networked SnO2 nanowires by Au nanoparticles synthesized via γ-ray radiolysis. J Hazardous Mater 193:243–248CrossRefGoogle Scholar
  111. 111.
    Shaalan NM, Yamazaki T, Kikuta T (2011) Synthesis of metal and metal oxide nanostructures and their application for gas sensing. Mater Chem Phys 127:143–150CrossRefGoogle Scholar
  112. 112.
    Anisimov OV, Gaman VI, Maksimova NK, Najden YP, Novikov VA, Sevastyanov EY, Rudov FV, Chernikov EV (2010) Effect of gold on the properties of nitrogen dioxide sensors based on thin WO3 films. Semiconductors 44(3):366–372CrossRefGoogle Scholar
  113. 113.
    Peeters D, Barreca D, Carraro G, Comini E, Gasparotto A, Maccato C, Sada C, Sberveglieri G (2014) Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J Phys Chem C 118:11813–11819CrossRefGoogle Scholar
  114. 114.
    Steffes H, Imawan C, Solzbacher F, Obermeier E (2001) Enhancement of NO2 sensing properties of In2O3-based thin films using an Au or Ti surface modification. Sensors Actuators B 72:106–112CrossRefGoogle Scholar
  115. 115.
    Carotta MC, Guidi V, Martinelli G, Nagliati M, Puzzovio D, Vecch D (2008) Sensing of volatile alkanes by metal-oxide semiconductors. Sensors Actuators B 130:497–501CrossRefGoogle Scholar
  116. 116.
    Sakai Y, Kadosaki M, Matsubara I, Itoh T (2009) Preparation of total VOC sensor with sensor-response stability for humidity by noble metal addition to SnO2. J Ceram Soc Jpn 117(12):1297–1301CrossRefGoogle Scholar
  117. 117.
    Wang L, Wang S, Xu M, Hu X, Zhang H, Wang Y, Huang W (2013) A Au-functionalized ZnO nanowire gas sensor for detection of benzene and toluene. Phys Chem Chem Phys 15:17179–17186CrossRefGoogle Scholar
  118. 118.
    Korotcenkov G, Cho BK, Gulina L, Tolstoy V (2009) Ozone sensors based on SnO2 films modified by SnO2-Au nanocomposites synthesized by the SILD method. Sensors Actuators B 138:512–517CrossRefGoogle Scholar
  119. 119.
    Shim Y-S, Kim DH, Jeong HY, Kim YH, Nahm SH, Kang C-Y, Kim J-S, Lee W, Jang HW (2015) Utilization of both-side metal decoration in close-packed SnO2 nanodome arrays for ultrasensitive gas sensing. Sensors Actuators B 213:314–321CrossRefGoogle Scholar
  120. 120.
    Li Y, Qiao L, Yan D, Wang L, Zeng Y, Yang H (2014) Preparation of Au-sensitized 3D hollow SnO2 microspheres with an enhanced sensing performance. J Alloys Compd 586:399–403CrossRefGoogle Scholar
  121. 121.
    Romanovskaya V, Ivanovskaya M, Bogdanov P (1999) A study of sensing properties of Pt- and Au-loaded In2O3 ceramics. Sensors Actuators B 56:31–36CrossRefGoogle Scholar
  122. 122.
    Shahabuddina Md, Sharma A, Kumar J, Tomar M, Umar A, Gupta V (2014) Metal clusters activated SnO2 thin film for low level detection of NH3 gas. Sensors Actuators B 194:410–418Google Scholar
  123. 123.
    Debeila MA, Wells RPK, Anderson JA (2006) Influence of water and pretreatment conditions on CO oxidation over Au/TiO2–In2O3 catalysts. J Catal 239:162–172CrossRefGoogle Scholar
  124. 124.
    Korotcenkov G, Cho BK (2011) Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement. Sensors Actuators B 156:527–538CrossRefGoogle Scholar
  125. 125.
    Liang Y-C, Liu S-L (2014) Synthesis and enhanced humidity detection response of nanoscale Au-particle-decorated ZnS spheres. Nanoscale Res Lett 9:647CrossRefGoogle Scholar
  126. 126.
    Korotcenkov G, Cerneavschi A, Brinzari V, Vasiliev A, Cornet A, Morante J, Cabot A, Arbiol J (2004) In2O3 films deposited by spray pyrolysis as a material for ozone gas sensors. Sensors Actuators B 99:304–310CrossRefGoogle Scholar
  127. 127.
    Korotcenkov G, Blinov I, Ivanov M, Stetter JR (2007) Ozone sensors on the base of SnO2 thin films deposited by spray pyrolysis. Sensors Actuators B 120:679–686CrossRefGoogle Scholar
  128. 128.
    Korotcenkov G, Cho BK (2014) Engineering approaches to improvement operating characteristics of conductometric gas sensors. Part 2: decrease of dissipated (consumable) power and improvement stability and reliability. Sensors Actuators B 198:316–341CrossRefGoogle Scholar
  129. 129.
    Satterfield CN (1996) Heterogeneous catalysis in industrial practice, 2nd edn. Krieger Publishing, MelbourneGoogle Scholar
  130. 130.
    Moreau F, Bond GC (2007) Preservation of the activity of supported gold catalysts for CO oxidation. Top Catal 44(1–2):95–101CrossRefGoogle Scholar
  131. 131.
    Bond GC, Louis C, Thompson DT (eds) (2006) Catalysis by gold. Imperial College Press, LondonGoogle Scholar
  132. 132.
    Li X, Zheng J, Yang X, Dai W, Fan K (2013) Preparation and application of highly efficient Au/SnO2 catalyst in the oxidative lactonization of 1,4‐butanediol to γ‐butyrolactone. Chin J Catal 34:1013–1019CrossRefGoogle Scholar
  133. 133.
    Daniells ST, Overweg AR, Makkee M, Moulijn JA (2005) The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined Mössbauer, FT-IR, and TAP reactor study. J Catal 230:52–65CrossRefGoogle Scholar
  134. 134.
    Barrio L, Liu P, Rodriguez JA, Campos-Martin JM, Fierro JLG (2007) Effects of hydrogen on the reactivity of O2 toward gold nanoparticles and surfaces. J Phys Chem C 111(51):19001–19008CrossRefGoogle Scholar
  135. 135.
    Kemper P, Kolmakov A, Tong X, Lilach Y, Benz L, Manard M, Metiu H, Buratto SK, Bowers MT (2006) Formation, deposition and examination of size selected metal clusters on semiconductor surfaces: an experimental setup. Int J Mass Spectrom 254:202–209CrossRefGoogle Scholar
  136. 136.
    Korotcenkov G, Brinzari V, Boris Y, Ivanov M, Schwank J, Morante J (2003) Surface Pd doping influence on gas sensing characteristics of SnO2 thin films deposited by spray pyrolysis. Thin Solid Films 436(1):119–126CrossRefGoogle Scholar
  137. 137.
    Kolmakov A, Klenov DO, Lilach Y, Stemmer S, Moskovits M (2005) Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett 5:667–673CrossRefGoogle Scholar
  138. 138.
    Sakurai H, Haruta M (1996) Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides. Catal Today 29:361–365CrossRefGoogle Scholar
  139. 139.
    Kuang MC, Daivis RJ, Kung HH (2007) Understanding Au-catalyzed low-temperature CO oxidation. J Phys Chem C 111:11767–11775CrossRefGoogle Scholar
  140. 140.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and CO3O4. J Catal 144:175–192CrossRefGoogle Scholar
  141. 141.
    Haruta M (2004) Nanoparticulate Gold catalysts for low-temperature CO oxidation. J New Mater Electrochem Syst 7:163–172Google Scholar
  142. 142.
    Panayotov DA, Burrows SP, Yates JT, Morris JR Jr (2011) Mechanistic studies of hydrogen dissociation and spillover on Au/TiO2: IR spectroscopy of coadsorbed CO and H-donated electrons. J Phys Chem C 115:22400–22408CrossRefGoogle Scholar
  143. 143.
    Green IX, Tang W, Neurock M, Yates JT Jr (2011) Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science 333:736–739CrossRefGoogle Scholar
  144. 144.
    Saliba N, Parker D, Koela B (1998) Adsorption of oxygen on Au(111) by exposure to ozone. Surf Sci 410:270–282CrossRefGoogle Scholar
  145. 145.
    Puckett SD, Heuser JA, Keith JD, Spendel WU, Pacey GE (2005) Interaction of ozone with gold nanoparticles. Talanta 66:1242–1246CrossRefGoogle Scholar
  146. 146.
    Biener J, Wittstock A, Zepeda-Ruiz LA, Biener MM, Zielasek V, Kramer D, Viswanath RN, Weissmüller J, Bäumer M, Hamza AV (2009) Surface-chemistry-driven actuation in nanoporous gold. Nat Mater 8:47–51CrossRefGoogle Scholar
  147. 147.
    King DE (1995) Oxidation of gold by ultraviolet light and ozone at 25 °C. J Vac Sci Technol A 1(3):1247–1253CrossRefGoogle Scholar
  148. 148.
    Kim J, Samano E, Koel BE (2006) Oxygen adsorption and oxidation reactions on Au(211) surfaces: exposures using O2 at high pressures and ozone (O3) in UHV. Surf Sci 600:4622–4632CrossRefGoogle Scholar
  149. 149.
    Saavedra J, Doan H, Pursell CJ, Grabow LC, Chandler BD (2014) The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345:1599–1602CrossRefGoogle Scholar
  150. 150.
    Ojeda M, Zhan B-Z, Iglesia E (2012) Mechanistic interpretation of CO oxidation turnover rates on supported Au clusters. J Catal 285:92–102CrossRefGoogle Scholar
  151. 151.
    Bond GC, Thompson DT (2000) Gold-catalysed oxidation of carbon monoxide. Gold Bull 33(2):41–50CrossRefGoogle Scholar
  152. 152.
    Ivanovskaya MI, Ovodok EA, Kotsikau DA (2012) Interaction of carbon monoxide with In2O3 and In2O3-Au nanocomposite. J Appl Spectrosc 78(6):842–847CrossRefGoogle Scholar
  153. 153.
    Ivanovskaya MI, Ovodok EA, Kotsikau DA (2011) Sol–gel synthesis and features of the structure of Au–In2O3 nanocomposites. Glass Phys Chem 37(5):560–567CrossRefGoogle Scholar
  154. 154.
    Calla JT, Davis RJ (2006) Oxygen-exchange reactions during CO oxidation over titania- and alumina-supported Au nanoparticles. J Catal 241:407–416CrossRefGoogle Scholar
  155. 155.
    Singh JA, Overbury SH, Dudney NJ, Li M, Veith GM (2012) Gold nanoparticles supported on carbon nitride: influence of surface hydroxyls on low temperature carbon monoxide oxidation. ACS Catal 2:1138–1146CrossRefGoogle Scholar
  156. 156.
    Ketchie WC, Murayama M, Davis RJ (2007) Promotional effect of hydroxyl on the aqueous phase oxidation of carbon monoxide and glycerol over supported Au catalysts. Top Catal 44:307–317CrossRefGoogle Scholar
  157. 157.
    Wang GY, Lian HL, Zhang WX, Jiang DZ, Wu TH (2002) Stability and deactivation of Au/Fe2O3 catalysts for CO oxidation at ambient temperature and moisture. Kinet Catal 43(3):433–442CrossRefGoogle Scholar
  158. 158.
    Fukui K, Sugiyama S, Iwasawa Y (2001) Atomic force microscopic study on thermal and UV-irradiative formation and control of Au nano-particles on TiO2(110) from Au(PPh3)(NO3). Phys Chem Chem Phys 3:3871–3877CrossRefGoogle Scholar
  159. 159.
    Remant Bahadur KC, Aryal S, Bhattarai SR, Bhattarai N, Kim CH, Kim HY (2006) Stabilization of gold nanoparticles by hydrophobically-modified polycations. J Biomater Sci Polym Ed 17(5):579–589CrossRefGoogle Scholar
  160. 160.
    Korotcenkov G, Cho BK, Gulina L, Tolstoy V (2009) SnO2 thin films modified by the SnO2-Au nanocomposites: response to reducing gases. Sensors Actuators B 141:610–616CrossRefGoogle Scholar
  161. 161.
    Rodriguez-Gonzalez V, Zanella R, Calzada LA, Gomez R (2009) Low-temperature CO oxidation and long-term stability of Au/In2O3-TiO2 catalysts. J Phys Chem C 113:8911–8917CrossRefGoogle Scholar
  162. 162.
    Park JB, Graciani J, Evans J, Stacchiola D, Ma S, Liu P, Nambu A, Fernandez Sanz J, Hrbek J, Rodriguez JA (2009) High catalytic activity of Au/CeOx/TiO2(110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proc Natl Acad Sci U S A 106(13):4975–4980CrossRefGoogle Scholar
  163. 163.
    Nafria R, Ramirez de la Piscina P, Homs N, Morante JR, Cabot A, Diaze U, Corma A (2013) Embedding catalytic nanoparticles inside mesoporous structures with controlled porosity: Au@TiO2. J Mater Chem A 1:14170–14176CrossRefGoogle Scholar
  164. 164.
    Wang C-T, Chen H-Y, Chen Y-C (2013) Gold/vanadium–tin oxide nanocomposites prepared by co-precipitation method for carbon monoxide gas sensors. Sensors Actuators B 176:945–951CrossRefGoogle Scholar
  165. 165.
    Badalyan SM, Rumyantseva MN, Nikolaev SA, Marikutsa AV, Smirnov VV, Alikhanian AS, Gaskov AM (2010) Effect of Au and NiO catalysts on the NO2 sensing properties of nanocrystalline SnO2. Inorg Mater 46(3):232–236CrossRefGoogle Scholar
  166. 166.
    Choi U-S, Sakai G, Shimanoe K, Yamazoe N (2005) Sensing properties of Au-loaded SnO2–Co3O4 composites to CO and H2. Sensors Actuators B 107:397–401CrossRefGoogle Scholar
  167. 167.
    Yamazoe N, Sakai G, Shimanoe K (2003) Oxide semiconductor gas sensors. Catal Surv Asia 7(1):63–75CrossRefGoogle Scholar
  168. 168.
    Galhenage RP, Yan H, Tenney SA, Park N, Henkelman G, Albrecht P, Mullins DR, Chen DA (2013) Understanding the nucleation and growth of metals on TiO2: Co compared to Au, Ni, and Pt. J Phys Chem C 117:7191–7201CrossRefGoogle Scholar
  169. 169.
    Grisel R, Nieuwenhuys BE (2001) A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts. Catal Today 64:69–81CrossRefGoogle Scholar
  170. 170.
    Metiu H (2008) Catalysis by nanostructures: methane, ethylene oxide, and propylene oxide synthesis on Ag, Cu or Au nanoclusters. Final Performance Report F49620-01-1-0459, ADA477251Google Scholar

Copyright information

© Springer-Verlag Wien 2016

Authors and Affiliations

  1. 1.School of Material Science and EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  2. 2.Department of Physics and EngineeringState University of MoldovaChisinauRepublic of Moldova

Personalised recommendations