Advertisement

Microchimica Acta

, Volume 183, Issue 2, pp 723–729 | Cite as

Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles

  • Xuejia Zhan
  • Guangzhi Hu
  • Thomas Wagberg
  • Shenshan Zhan
  • Hanchu Xu
  • Pei Zhou
Original Paper

Abstract

The authors describe a label-free electrochemical aptasensor for tetracycline (TET). The TET-binding aptamer was immobilized on a composite consisting of reduced graphene oxide, magnetite (Fe3O4) and sodium alginate, and this material was used to modify the surface of a screen-printed carbon electrode (SPCE). Cyclic voltammetry was carried out to characterize the single steps in the preparation of the modified electrode and to optimize the conditions for detection. Differential pulse voltammetry (DPV) was then used to monitor the interaction between aptamer and TET by applying the electrochemical probe thionine. Under optimal conditions, TET can be quantified by DPV in the 1 nM to 5 μM concentration range, with a detection limit as low as 0.6 nM (at an S/N ratio of 3). The method is rapid, cost-efficient, highly sensitive and specific, and therefore is considered to be a viable platform for TET analysis in food, environmental, and clinical samples.

Graphical Abstract

The electrochemical aptasensor for TET is based on the use of a screen-printed carbon electrode modified with reduced graphene oxide, Fe3O4 nanoparticles and sodium alginate, and using thionine (Thi) as an electrochemical probe

Keywords

Cyclic voltammetry Differential pulse voltammetry Scanning electron microscopy Transmission electron microscopy Sodium alginate Thionine Redox probe 

Notes

Acknowledgments

This work was supported by the National High Technology Research and Development Program (“863” Program) of China (No. 2012AA101405), Morningstar Fund of Shanghai Jiaotong University (No. 13X100010018), 1000-Talent Program (Recruitment Program of Global Expert, In Chinese: Qian-Ren-Ji-Hua) and Director Foundation of XTIPC, CAS (No. 2015RC012). We thank Kecheng Cao of Sichuan University for providing the rGO-Fe3O4 and helpful discussions. We also thank Bin Chen of Shanghai Jiaotong University for TEM, HRTEM and EDS analyses.

Supplementary material

604_2015_1718_MOESM1_ESM.doc (720 kb)
ESM 1 (DOC 720 kb)

References

  1. 1.
    Fritz J, Zuo Y (2007) Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography. Food Chem 105(3):1297–1301CrossRefGoogle Scholar
  2. 2.
    Sassman SA, Lee L (2005) Sorption of three tetracyclines by several soils assessing the role of pH and cation exchange. Environ Sci Technol 39:7452–7459CrossRefGoogle Scholar
  3. 3.
    Sarmah AK, Meyer MT, Boxall AB (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65(5):725–759CrossRefGoogle Scholar
  4. 4.
    Hamscher G, Pawelzick HT, Höper H, Nau H (2005) Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ Toxicol Chem 24(4):861–868CrossRefGoogle Scholar
  5. 5.
    Wu N, Qiao M, Zhang B, Cheng WD, Zhu YG (2010) Abundance and diversity of tetracycline resistance genes in soils adjacent to representative swine feedlots in China. Environ Sci Technol 44(18):6933–6939CrossRefGoogle Scholar
  6. 6.
    Shentu JL, Zhang K, Shen DS, Wang MZ, Feng HJ (2015) Effect from low-level exposure of oxytetracycline on abundance of tetracycline resistance genes in arable soils. Environ Sci Pollut Res Int, Press. doi: 10.1007/s11356-015-4099-1 Google Scholar
  7. 7.
    Jin H, Kumar AP, Paik DH, Ha KC, Yoo YJ, Lee YI (2010) Trace analysis of tetracycline antibiotics in human urine using UPLC-QToF mass spectrometry. Microchem J 94(2):139–147CrossRefGoogle Scholar
  8. 8.
    Zhang Y, Lu S, Liu W, Zhao C, Xi R (2007) Preparation of anti-tetracycline antibodies and development of an indirect heterologous competitive enzyme-linked immunosorbent assay to detect residues of tetracycline in milk. J Agric Food Chem 55(2):211–218CrossRefGoogle Scholar
  9. 9.
    Nagel OG, Molina MP, Althaus RL (2011) Optimization of bioassay for tetracycline detection in milk by means of chemometric techniques. Lett Appl Microbiol 52(3):245–252CrossRefGoogle Scholar
  10. 10.
    Yudthavorasit S, Chiaochan C, Leepipatpiboon N (2011) Simultaneous determination of multi-class antibiotic residues in water using carrier-mediated hollow-fiber liquid-phase microextraction coupled with ultra-high performance liquid chromatography tandem mass spectrometry. Microchim Acta 172(1–2):39–49CrossRefGoogle Scholar
  11. 11.
    Townshend A, Ruengsitagoon W, Thongpoon C, Liawruangrath S (2005) Flow injection chemiluminescence determination of tetracycline. Anal Chim Acta 541(1–2):103–109CrossRefGoogle Scholar
  12. 12.
    Rodriguez JA, Espinosa J, Aguilar-Arteaga K, Ibarra IS, Miranda JM (2010) Determination of tetracyclines in milk samples by magnetic solid phase extraction flow injection analysis. Microchim Acta 171(3–4):407–413CrossRefGoogle Scholar
  13. 13.
    Ferreira CS, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol 27(6):289–301CrossRefGoogle Scholar
  14. 14.
    Velasco-Garcia M, Missailidis S (2009) New trends in aptamer-based electrochemical biosensors. Gene Ther Mol Biol 13:1–10Google Scholar
  15. 15.
    Xue F, Wu J, Chu H, Mei Z, Ye Y, Liu J, Zhang R, Peng C, Zheng L, Chen W (2012) Electrochemical aptasensor for the determination of bisphenol a in drinking water. Microchim Acta 180(1–2):109–115Google Scholar
  16. 16.
    Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100–3107CrossRefGoogle Scholar
  17. 17.
    Shen B, Li J, Cheng W, Yan Y, Tang R, Li Y, Ju H, Ding S (2015) Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification. Microchim Acta 182(1–2):361–367CrossRefGoogle Scholar
  18. 18.
    Zhang H, Shuang S, Sun L, Chen A, Qin Y, Dong C (2013) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181(1–2):189–196Google Scholar
  19. 19.
    Gao F, Lei J, Ju H (2013) Label-free surface-enhanced Raman spectroscopy for sensitive DNA detection by DNA-mediated silver nanoparticle growth. Anal Chem 85(24):11788–11793CrossRefGoogle Scholar
  20. 20.
    Du Y, Li B, Wang F, Dong S (2009) Au nanoparticles grafted sandwich platform used amplified small molecule electrochemical aptasensor. Biosens Bioelectron 24(7):1979–1983CrossRefGoogle Scholar
  21. 21.
    Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8(10):3137–3140CrossRefGoogle Scholar
  22. 22.
    Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613CrossRefGoogle Scholar
  23. 23.
    Yang J, Deng S, Lei J, Ju H, Gunasekaran S (2011) Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing. Biosens Bioelectron 29(1):159–166CrossRefGoogle Scholar
  24. 24.
    Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Mullen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085CrossRefGoogle Scholar
  25. 25.
    Ye Y, Kong T, Yu X, Wu Y, Zhang K, Wang X (2012) Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89:417–421CrossRefGoogle Scholar
  26. 26.
    Dong Y, Zhang H, Rahman ZU, Su L, Chen X, Hu J, Chen X (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4:3969–3976CrossRefGoogle Scholar
  27. 27.
    Shi W, Zhu J, Sim DH, Tay YY, Lu Z, Zhang X, Sharma Y, Srinivasan M, Zhang H, Hng HH, Yan Q (2011) Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites. J Mater Chem 21:3422–3427CrossRefGoogle Scholar
  28. 28.
    Cao KC (2015) Preparation of graphene/graphene based hybrid material by microwave assisted methods and the control of defect in graphene. Sichuan University, Chengdu, China, Master thesisGoogle Scholar
  29. 29.
    Niazi JH, Lee SJ, Gu MB (2008) Single-stranded DNA aptamers specific for antibiotics tetracyclines. Bioorg Med Chem 16(15):7245–7253CrossRefGoogle Scholar
  30. 30.
    Zhao G, Zhan X (2010) Facile preparation of disposable immunosensor for shigella flexneri based on multi-wall carbon nanotubes/chitosan composite. Electrochim Acta 55(7):2466–2471CrossRefGoogle Scholar
  31. 31.
    Yang S, Feng X, Ivanovici S, Müllen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411CrossRefGoogle Scholar
  32. 32.
    Song S, Wang L, Li J, Fan C, Zhao J (2008) Aptamer-based biosensors. Trends Anal Chem 27(2):108–117CrossRefGoogle Scholar
  33. 33.
    Zhou L, Li DJ, Gai L, Wang JP, Li YB (2012) Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensors Actuators B Chem 162(1):201–208CrossRefGoogle Scholar
  34. 34.
    Chen D, Yao D, Xie C, Liu D (2014) Development of an aptasensor for electrochemical detection of tetracycline. Food Control 42:109–115CrossRefGoogle Scholar
  35. 35.
    Guo Y, Wang X, Sun X (2015) A label-free electrochemical aptasensor based on electrodeposited gold nanoparticles and methylene blue for tetracycline detection. Int J Electrochem Sci 10:3668–3679Google Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Xuejia Zhan
    • 1
  • Guangzhi Hu
    • 2
    • 3
  • Thomas Wagberg
    • 3
  • Shenshan Zhan
    • 1
  • Hanchu Xu
    • 1
  • Pei Zhou
    • 1
  1. 1.School of Agriculture and Biology & Bor S. Luh Food Safety Research Center; Key Laboratory of Urban Agriculture (South), Ministry of AgricultureShanghai Jiaotong UniversityShanghaiPeople’s Republic of China
  2. 2.Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesUrumqiPeople’s Republic of China
  3. 3.Department of PhysicsUmea UniversityUmeaSweden

Personalised recommendations