Microchimica Acta

, Volume 183, Issue 2, pp 749–755 | Cite as

Homogeneous immunoassay for the cancer marker alpha-fetoprotein using single wavelength excitation fluorescence cross-correlation spectroscopy and CdSe/ZnS quantum dots and fluorescent dyes as labels

  • Jinjie Wang
  • Heng Liu
  • Xiangyi HuangEmail author
  • Jicun RenEmail author
Original Paper


The article describes sensitive and selective homogeneous immunoassays for the liver cancer biomarker alpha-fetoprotein (AFP) in human serum by using single wavelength excitation fluorescence cross-correlation spectroscopy (SW-FCCS). Both competitive and sandwich immunoassay modes were applied, and AFP served as a model analyte. Fluorescent CdSe/ZnS quantum dots (with a 655 nm emission peak) and the fluorophore Alexa Fluor 488 (520 nm emission) were chosen to label the antibodies in the sandwich mode, and the antibody and the antigen in the competitive mode. Under optimized conditions, the sandwich assay has a linear dynamic range that covers the 20 pM to 5.0 nM concentration range. The competitive assay, in turn, extends from 180 pM to 15.0 nM. The respective detection limits are 20 pM and 180 pM. The method was successfully applied to directly determine AFP in (spiked) clinical samples, and results were in good agreement with data obtained via ELISAs.

Graphical Abstract

Homogeneous immunoassay based on single wavelength excitation fluorescence cross-correlation spectroscopy (SW-FCCS) has been used to detect the biomarker alpha-fetoprotein in human sera.


Bioconjugate Cross-correlation function ELISA Size exclusion chromatography Tumor marker 



This work was financially supported by NSFC (Grants 21075081, 20905048, 21135004 and 21327004).

Supplementary material

604_2015_1694_MOESM1_ESM.doc (3.4 mb)
ESM 1 (DOC 3.35 mb)


  1. 1.
    Eigen M, Rigler R (1994) Sorting single molecules: application to diagnostics and evolutionary biotechnology. Proc Natl Acad Sci U S A 91(13):5740–5747CrossRefGoogle Scholar
  2. 2.
    Schwille P, Meyer-Almes F-J, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72(4):1878–1886CrossRefGoogle Scholar
  3. 3.
    Ries J, Schwille P (2012) Fluorescence correlation spectroscopy. BioEssays 34(5):361–368CrossRefGoogle Scholar
  4. 4.
    Zhou X, Tang Y, Xing D (2011) One-step homogeneous protein detection based on aptamer probe and fluorescence cross-correlation spectroscopy. Anal Chem 83(8):2906–2912CrossRefGoogle Scholar
  5. 5.
    Ohrt T, Mutze J, Staroske W, Weinmann L, Hock J, Crell K, Meister G, Schwille P (2008) Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Res 36(20):6439–6449CrossRefGoogle Scholar
  6. 6.
    Ly S, Altman R, Petrlova J, Lin Y, Hilt S, Huser T, Laurence TA, Voss JC (2013) Binding of apolipoprotein E inhibits the oligomer growth of amyloid-β peptide in solution as determined by fluorescence cross-correlation spectroscopy. J Biol Chem 288(17):11628–11635CrossRefGoogle Scholar
  7. 7.
    Triffo SB, Huang HH, Smith AW, Chou ET, Groves JT (2012) Monitoring lipid anchor organization in cell membranes by PIE-FCCS. J Am Chem Soc 134(26):10833–10842CrossRefGoogle Scholar
  8. 8.
    Miller AE, Hollars CW, Lane SM, Laurence TA (2009) Fluorescence cross-correlation spectroscopy as a universal method for protein detection with low false positives. Anal Chem 81(14):5614–5622CrossRefGoogle Scholar
  9. 9.
    Fujii F, Horiuchi M, Ueno M, Sakata H, Nagao I, Tamura M, Kinjo M (2007) Detection of prion protein immune complex for bovine spongiform encephalopathy diagnosis using fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy. Anal Biochem 370(2):131–141CrossRefGoogle Scholar
  10. 10.
    Schaeffel D, Staff RH, Butt H-J, Landfester K, Crespy D, Koynov K (2012) Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation. Nano Lett 12(11):6012–6017CrossRefGoogle Scholar
  11. 11.
    Guldbrand S, Kirejev V, Simonsson C, Goksör M, Smedh M, Ericson MB (2012) Two-photon fluorescence correlation spectroscopy as a tool for measuring molecular diffusion within human skin. Eur J Pharm Biopharm 84(2):430–436CrossRefGoogle Scholar
  12. 12.
    Hwang LC, Wohland T (2004) Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. ChemPhysChem 5(4):549–551CrossRefGoogle Scholar
  13. 13.
    Fujii F, Kinjo M (2007) Detection of antigen protein by using fluorescence cross-correlation spectroscopy and quantum-dot-labeled antibodies. Chembiochem 8(18):2199–2203CrossRefGoogle Scholar
  14. 14.
    Liu P, Sudhaharan T, Koh R, Hwang L, Ahmed S, Maruyama I, Wohland T (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93(2):684–698CrossRefGoogle Scholar
  15. 15.
    Kogure T, Karasawa S, Araki T, Saito K, Kinjo M, Miyawaki A (2006) A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy. Nat Biotechnol 24(5):577–581. doi: 10.1038/nbt1207 CrossRefGoogle Scholar
  16. 16.
    Carmel R (2011) Biomarkers of cobalamin (vitamin B-12) status in the epidemiologic setting: a critical overview of context, applications, and performance characteristics of cobalamin, methylmalonic acid, and holotranscobalamin II. Am J Clin Nutr 94(1):348S–358SCrossRefGoogle Scholar
  17. 17.
    Trnkova L, Krizkova S, Adam V, Hubalek J, Kizek R (2011) Immobilization of metallothionein to carbon paste electrode surface via anti-MT antibodies and its use for biosensing of silver. Biosens Bioelectron 26(5):2201–2207CrossRefGoogle Scholar
  18. 18.
    Terry LA, White SF, Tigwell LJ (2005) The application of biosensors to fresh produce and the wider food industry. J Agric Food Chem 53(5):1309–1316CrossRefGoogle Scholar
  19. 19.
    Cruz-Aguado JA, Penner G (2008) Fluorescence polarization based displacement assay for the determination of small molecules with aptamers. Anal Chem 80(22):8853–8855CrossRefGoogle Scholar
  20. 20.
    Huang X, Ren J (2012) Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. TrAC Trends Anal Chem 40:77–89CrossRefGoogle Scholar
  21. 21.
    Kreisig T, Hoffmann R, Zuchner T (2011) Homogeneous fluorescence-based immunoassay detects antigens within 90 seconds. Anal Chem 83(11):4281–4287CrossRefGoogle Scholar
  22. 22.
    Sha MY, Xu H, Natan MJ, Cromer R (2008) Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J Am Chem Soc 130(51):17214–17215CrossRefGoogle Scholar
  23. 23.
    Fan H, Xu Y, Chang Z, Xing R, Wang Q, He P, Fang Y (2011) A non-immobilizing electrochemical DNA sensing strategy with homogenous hybridization based on the host–guest recognition technique. Biosens Bioelectron 26(5):2655–2659CrossRefGoogle Scholar
  24. 24.
    Li Z, Dong C, Tang L, Zhu X, Chen H, Ren J (2011) Aqueous synthesis of CdTe/CdS/ZnS quantum dots and their optical and chemical properties. Luminescence 26(6):439–448CrossRefGoogle Scholar
  25. 25.
    Wang J, Huang X, Zan F, Guo C, Cao C, Ren J (2012) Studies on bioconjugation of quantum dots using capillary electrophoresis and fluorescence correlation spectroscopy. Electrophoresis 33(13):1987–1995CrossRefGoogle Scholar
  26. 26.
    Wang J, Huang X, Ruan L, Lan T, Ren J (2013) Size exclusion chromatography as a universal method for the purification of quantum dots bioconjugates. Electrophoresis 34(12):1764–1771CrossRefGoogle Scholar
  27. 27.
    Saito K, Wada I, Tamura M, Kinjo M (2004) Direct detection of caspase-3 activation in single live cells by cross-correlation analysis. Biochem Biophys Res Commun 324(2):849–854CrossRefGoogle Scholar
  28. 28.
    Kettling U, Koltermann A, Schwille P, Eigen M (1998) Real-time enzyme kinetics monitored by dual-color fluorescence cross-correlation spectroscopy. Proc Natl Acad Sci USA 95(4):1416–1420CrossRefGoogle Scholar
  29. 29.
    Wolfbeis OS, Leiner M (1985) Mapping of the total fluorescence of human blood serum as a new method for its characterization. Anal Chim Acta 167:203–215CrossRefGoogle Scholar
  30. 30.
    Zhao J, Guo Z, Feng D, Guo J, Wang J, Zhang Y (2015) Simultaneous electrochemical immunosensing of alpha-fetoprotein and prostate specific antigen using a glassy carbon electrode modified with gold nanoparticle-coated silica nanospheres and decorated with Azure A or ferrocenecarboxylic acid. Microchim Acta 182(15–16):2435–2442CrossRefGoogle Scholar
  31. 31.
    Xu R, Jiang Y, Xia L, Zhang T, Xu L, Zhang S, Liu D, Song H (2015) A sensitive photoelectrochemical biosensor for AFP detection based on ZnO inverse opal electrodes with signal amplification of CdS-QDs. Biosens Bioelectron 74:411–417CrossRefGoogle Scholar
  32. 32.
    Lu Y, Huang X, Ren J (2013) Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout. Microchim Acta 180(7–8):635–642CrossRefGoogle Scholar
  33. 33.
    Chen MJ, Wu YS, Lin GF, Hou JY, Li M, Liu TC (2012) Quantum-dot-based homogeneous time-resolved fluoroimmunoassay of alpha-fetoprotein. Anal Chim Acta 741:100–105CrossRefGoogle Scholar
  34. 34.
    Lan T, Dong C, Huang X, Ren J (2013) A sensitive, universal and homogeneous method for determination of biomarkers in biofluids by resonance light scattering correlation spectroscopy (RLSCS). Talanta 116:501–507CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.College of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiaotong UniversityShanghaiPeople’s Republic of China

Personalised recommendations