Microchimica Acta

, Volume 183, Issue 2, pp 625–631 | Cite as

Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay

  • Caiping Ding
  • Yinghan Yan
  • Dongshan Xiang
  • Cuiling ZhangEmail author
  • Yuezhong XianEmail author
Original Paper


Greigite magnetic nanoparticles (Fe3S4-MNPs) were prepared and reveal a peroxidase-like activity. Kinetic studies revealed a pseudo-enzymatic activity that is much higher than that of other magnetic nanomaterial-based enzyme mimetics. This finding was exploited to design a photometric enzymatic glucose assay based on the formation of H2O2 during enzymatic oxidation of glucose by glucose oxidase, and the formation of a blue product from an enzyme substrate that is catalytically oxidized by H2O2 in the presence of Fe3S4-MNPs. Glucose can be detected in the 2 to 100 μM concentration range, and the low detection limit is 0.16 μM. The method was applied to quantify glucose in human serum. In our perception, this enzyme mimetic has a large potential in that it may be used in other oxidase based assays, but also in ELISAs.

Graphic Abstract

Fe3S4 magnetic nanoparticles (MNPs) are shown to act as peroxidase mimetics and this was used to design a glucose oxidase (GOx) based glucose assay where the H2O2 formed during oxidation of glucose oxidizes tetramethylbenzidine (TMB) to give a blue product which can be quantified by photometry.


Greigite nanoparticles Peroxidase mimic Hydrogen peroxide Glucose assay SEM TEM 



We acknowledge financial support from the National Natural Science Foundation of China (21175046, 21465010) and the Shanghai Natural Science Foundation (15ZR1411600).

Supplementary material

604_2015_1690_MOESM1_ESM.docx (626 kb)
ESM 1 (DOCX 625 kb)


  1. 1.
    Liu JB, Hu XN, Hou S, Wen T, Liu WQ, Zhu X, Wu XC (2011) Screening of inhibitors for oxidase mimics of Au@Pt nanorods by catalytic oxidation of OPD. Chem Commun 47(39):10981–10983. doi: 10.1039/c1cc14346h CrossRefGoogle Scholar
  2. 2.
    Zhao K, Gu W, Zheng S, Zhang CL, Xian YZ (2015) SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52. doi: 10.1016/j.talanta.2015.03.055 CrossRefGoogle Scholar
  3. 3.
    Wei H, Wang E (2008) Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal Chem 80(6):2250–2254. doi: 10.1021/Ac702203f CrossRefGoogle Scholar
  4. 4.
    Asati A, Santra S, Kaittanis C, Nath S, Perez JM (2009) Oxidase-like activity of polymer-coated cerium oxide nanoparticles. Angew Chem Int Ed 48(13):2308–2312. doi: 10.1002/anie.200805279 CrossRefGoogle Scholar
  5. 5.
    Wang N, Sun JC, Chen LJ, Fan H, Ai SY (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182:1733–1738. doi: 10.1007/s00604-015-1506-8 CrossRefGoogle Scholar
  6. 6.
    Zheng X, Liu Q, Jing C, Li Y, Li D, Luo W, Wen Y, He Y, Huang Q, Long YT, Fan C (2011) Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew Chem Int Ed 50(50):11994–11998. doi: 10.1002/anie.201105121 CrossRefGoogle Scholar
  7. 7.
    Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210. doi: 10.1002/adma.200903783 CrossRefGoogle Scholar
  8. 8.
    Song YJ, Wang XH, Zhao C, Qu KG, Ren JS, Qu XG (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621. doi: 10.1002/chem.200902643 CrossRefGoogle Scholar
  9. 9.
    Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1(2):142–150. doi: 10.1038/nnano.2006.91 CrossRefGoogle Scholar
  10. 10.
    Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290. doi: 10.1021/nn1029586 CrossRefGoogle Scholar
  11. 11.
    Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583. doi: 10.1038/nnano.2007.260 CrossRefGoogle Scholar
  12. 12.
    An Q, Sun C, Li D, Xu K, Guo J, Wang C (2013) Peroxidase-like activity of Fe3O4@carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Interfaces 5(24):13248–13257. doi: 10.1021/am4042367 CrossRefGoogle Scholar
  13. 13.
    Dong YL, Zhang HG, Rahman ZU, Su L, Chen XJ, Hu J, Chen XG (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976. doi: 10.1039/C2NR12109C CrossRefGoogle Scholar
  14. 14.
    Chang Q, Tang HQ (2014) Optical determination of glucose and hydrogen peroxide using a nanocomposite prepared from glucose oxidase and magnetite nanoparticles immobilized on graphene oxide. Microchim Acta 181:527–534. doi: 10.1007/s00604-013-1145-x CrossRefGoogle Scholar
  15. 15.
    Liu Y, Yuan M, Qiao LJ, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396. doi: 10.1016/j.bios.2013.09.020 CrossRefGoogle Scholar
  16. 16.
    Bhattacharya D, Baksi A, Banerjee I, Ananthakrishnan R, Maiti TK, Pramanik P (2011) Development of phosphonate modified Fe(1−x)MnxFe2O4 mixed ferrite nanoparticles: novel peroxidase mimetics in enzyme linked immunosorbent assay. Talanta 86:337–348. doi: 10.1016/j.talanta.2011.09.026 CrossRefGoogle Scholar
  17. 17.
    Su L, Qin WJ, Zhang HG, Rahman ZU, Ren CL, Ma SD, Chen XG (2015) The peroxidase/catalase-like activities of MFe2O4 (M = Mg, Ni, Cu) MNPs and their application in colorimetric biosensing of glucose. Biosens Bioelectron 63:384–391. doi: 10.1016/j.bios.2014.07.048 CrossRefGoogle Scholar
  18. 18.
    Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42:6060–6093. doi: 10.1039/c3cs35486e CrossRefGoogle Scholar
  19. 19.
    Lyubutin IS, Starchikov SS, Lin CR, Lu SZ, Shaikh MO, Funtov KO, Dmitrieva TV, Ovchinnikov SG, Edelman IS, Ivantsov R (2013) Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process. J Nanoparticle Res 15:1397–1410. doi: 10.1007/s11051-012-1397-0 CrossRefGoogle Scholar
  20. 20.
    Jia XL, Chen Z, Cui X, Peng YT, Wang XL, Wang G, Wei F, Lu YF (2012) Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries. ACS Nano 6(11):9911–9919. doi: 10.1021/nn303478e CrossRefGoogle Scholar
  21. 21.
    Li GW, Zhang BM, Yu F, Novakova AA, Krivenkov MS, Kiseleva TY, Chang L, Rao JC, Polyakov AO, Blake GR, de Groot RA, Palstra TTM (2014) High-purity Fe3S4 greigite microcrystals for magnetic and electrochemical performance. Chem Mater 26(20):5821–5829. doi: 10.1021/cm501493m CrossRefGoogle Scholar
  22. 22.
    Hunger S, Benning LG (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem T 8. doi: 10.1186/1467-4866-8-1
  23. 23.
    Chang YS, Savitha S, Sadhasivam S, Hsu CK, Lin FH (2011) Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. J Colloid Interface Sci 363(1):314–319. doi: 10.1016/j.jcis.2010.06.069 CrossRefGoogle Scholar
  24. 24.
    Andre R, Natalio F, Humanes M, Leppin J, Heinze K, Wever R, Schroder HC, Muller WEG, Tremel W (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509. doi: 10.1002/adfm.201001302 CrossRefGoogle Scholar
  25. 25.
    Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2013) Peroxidase-like activity of cupric oxide nanoparticle. Chem Cat Chem 3:1151–1154. doi: 10.1002/cctc.201100064 Google Scholar
  26. 26.
    Xie JX, Zhang XD, Wang H, Zheng HZ, Huang YM (2012) Analytical and environmental applications of nanoparticles as enzyme mimetics. TrAC Trends Anal Chem 39:114–129. doi: 10.1016/j.trac.2012.03.021 CrossRefGoogle Scholar
  27. 27.
    Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA (2015) Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine 10(15):2365–2377. doi: 10.2217/nnm.15.72 Epub 2015 Aug 7CrossRefGoogle Scholar
  28. 28.
    Feng M, Lu Y, Yang Y, Zhang M, Xu YJ, Gao HL, Dong L, Xu WP, Yu SH (2013) Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications. Sci Report 3. doi: 10.1038/srep02994
  29. 29.
    Dou H, Kim BJ, Choi SH, Jung EC, Lee S (2014) Effect of size of Fe3O4 magnetic nanoparticles on electrochemical performance of screen printed electrode using sedimentation field-flow fractionation. J Nanoparticle Res 16:2679. doi: 10.1007/s11051-014-2679-5 CrossRefGoogle Scholar
  30. 30.
    Zhao P, He KY, Han YT, Zhang Z, Yu MZ, Wang HH, Huang Y, Nie Z, Yao SZ (2015) Near-infrared dual-emission quantum dots − gold nanoclusters nanohybrid via Co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and In Vivo. Anal Chem 87(19):9998–10005. doi: 10.1021/acs.analchem.5b02614 CrossRefGoogle Scholar
  31. 31.
    Zheng AX, Cong ZX, Wang JR, Li J, Yang HH, Chen GN (2013) Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron 49:519–524. doi: 10.1016/j.bios.2013.05.038 CrossRefGoogle Scholar
  32. 32.
    Lineweaver H (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666. doi: 10.1021/ja01318a036 CrossRefGoogle Scholar
  33. 33.
    Su L, Feng J, Zhou XM, Ren CL, Li HH, Chen XG (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84(13):5753–5758. doi: 10.1021/ac300939z CrossRefGoogle Scholar
  34. 34.
    Li Q, Tang GG, Xiong XW, Cao YL, Chen LL, Xu FG, Tan HL (2015) Carbon coated magnetite nanoparticles with improved water-dispersion and peroxidase-like activity for colorimetric sensing of glucose. Sensors Actuators B 215:86–92. doi: 10.1016/j.snb.2015.03.029 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Department of Chemistry, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
  2. 2.School of Chemical and Environmental EngineeringHubei University for NationalitiesEnshiChina

Personalised recommendations