Microchimica Acta

, Volume 183, Issue 2, pp 617–623 | Cite as

Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions

  • Pengfei Niu
  • César Fernández-Sánchez
  • Martí Gich
  • Carla Navarro-Hernández
  • Pablo Fanjul-Bolado
  • Anna Roig
Original Paper

Abstract

This work reports on the simplified fabrication and on the characterization of bismuth-based screen-printed electrodes (SPEs) for use in heavy metal detection. A nanocomposite consisting of bismuth nanoparticles and amorphous carbon was synthesized by a combined one-step sol-gel and pyrolysis process and milled down to a specific particle size distribution as required for the preparation of an ink formulation to be used in screen printing. The resulting electrochemical devices were applied to the detection of Pb(II) and Cd(II) ions in water samples. The porous structure of carbon and the high surface area of the bismuth nanoparticles allow for the detection of Pb(II) and Cd(II) at concentration levels below 4 ppb. The application of the SPEs was demonstrated by quantifying these ions in tap drinking water and wastewater collected from an influent of an urban wastewater treatment plant.

Graphical Abstract

A tailor-made bismuth nanoparticle porous carbon nanocomposite material, synthesized by a sol-gel/pyrolysis process, was used for the fabrication of screen-printed electrodes applied to the detection of Pb(II) and Cd(II) in water samples.

Keywords

Sol-gel process Lead(II) Cadmium(II) Energy dispersive X-ray spectroscopy Square wave anodic stripping voltammetry Cyclic voltammetry Water analysis 

Notes

Acknowledgments

This research was partially funded by the Spanish Government and cofounded by the European Social Fund (MAT2012-35324, TEC2010-17274, CGL2013-48460-C2), the Generalitat de Catalunya (2014SGR213, 2014SGR1645) and the European Commission (FP7-Marie Curie Actions, PCIG09-GA-2011-294168 grant and FP7-OCEAN-COMMON SENSE as well as the COST Action MP1202). The Chinese Scholarship Council fellowship of P. N. is also acknowledged.

Supplementary material

604_2015_1684_MOESM1_ESM.docx (779 kb)
ESM 1(DOCX 778 kb)

References

  1. 1.
    Wang J (2005) Stripping analysis at bismuth electrodes: a review. Electroanalysis 17:1341CrossRefGoogle Scholar
  2. 2.
    Economou A (2005) Bismuth-film electrodes: recent developments and potentialities for electroanalysis. TrAC Trends Anal Chem 24:334CrossRefGoogle Scholar
  3. 3.
    Kokkinos C, Economou A (2008) Stripping analysis at bismuth-based electrodes. Curr Anal Chem 4:183CrossRefGoogle Scholar
  4. 4.
    Barón-Jaimez J, Joya MR, Barba-Ortega J (2013) Bismuth electrodes, an alternative in stripping voltammetry. J Phys Conf Ser 466:012025CrossRefGoogle Scholar
  5. 5.
    Serrano N, Alberich A, Díaz-Cruz JM, Ariño C, Esteban M (2013) Coating methods, modifiers and applications of bismuth screen-printed electrodes. TrAC Trends Anal Chem 46:15CrossRefGoogle Scholar
  6. 6.
    Yang D, Wang L, Chen Z, Megharaj M, Naidu R (2014) Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim Acta 181:1199CrossRefGoogle Scholar
  7. 7.
    Li Y, Sun G, Zhang Y, Ge C, Bao N, Wang Y (2014) A glassy carbon electrode modified with bismuth nanotubes in a silsesquioxane framework for sensing of trace lead and cadmium by stripping voltammetry. Microchim Acta 181:751CrossRefGoogle Scholar
  8. 8.
    Kokkinos C, Economou A, Raptis I (2012) Microfabricated disposable lab-on-a-chip sensors with integrated bismuth microelectrode arrays for voltammetric determination of trace metals. Anal Chim Acta 710:1CrossRefGoogle Scholar
  9. 9.
    Niu X, Lan M, Zhao H, Chen C, Li Y, Zhu X (2013) Review: electrochemical stripping analysis of trace heavy metals using screen-printed electrodes. Anal Lett 46:2479CrossRefGoogle Scholar
  10. 10.
    Metters JP, Kadara RO, Banks CE (2011) New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 136:1067CrossRefGoogle Scholar
  11. 11.
    Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrodes for biosensing: a review (2008–2013). Microchim Acta 181:865CrossRefGoogle Scholar
  12. 12.
    Neagu D, Arduini F, Quintana JC, Di Cori P, Forni C, Moscone D (2014) Disposable electrochemical sensor to evaluate the phytoremediation of the aquatic plant lemna minor L. toward Pb2+ and/or Cd2+. Environ Sci Technol 48:7477CrossRefGoogle Scholar
  13. 13.
    Chen C, Niu X, Chai Y, Zhao H, Lan M (2013) Bismuth based porous screen-printed electrode with enhanced sensitivity for trace heavy metal detection by stripping voltammetry. Sens Actuators B Chem 178:339CrossRefGoogle Scholar
  14. 14.
    Serrano N, Díaz-Cruz JM, Ariño C, Esteban M (2010) Ex-situ deposited bismuth film on screen-printed carbon electrode: a disposable device for stripping voltammetry of heavy metal ions. Electroanalysis 22:1460CrossRefGoogle Scholar
  15. 15.
    Rico MÁG, Olivares-Marín M, Gil EP (2009) Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II). Talanta 80:631CrossRefGoogle Scholar
  16. 16.
    Riman D, Jirovsky D, Hrbac J, Prodromidis MI (2015) Green and facile electrode modification by spark discharge: bismuth oxide-screen printed electrodes for the screening of ultra-trace Cd(II) and Pb(II). Electrochem Commun 50:20CrossRefGoogle Scholar
  17. 17.
    Kadara RO, Tothill IE (2008) Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples. Anal Chim Acta 623:76CrossRefGoogle Scholar
  18. 18.
    Lezi N, Economou A, Dimovasilis PA, Trikalitis PN, Prodromidis MI (2012) Disposable screen-printed sensors modified with bismuth precursor compounds for the rapid voltammetric screening of trace Pb(II) and Cd(II). Anal Chim Acta 728:1CrossRefGoogle Scholar
  19. 19.
    Hwang G-H, Han W-K, Park J-S, Kang S-G (2008) An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium. Sens Actuators B Chem 135:309CrossRefGoogle Scholar
  20. 20.
    Sosa V, Serrano N, Ariño C, Díaz-Cruz JM, Esteban M (2014) Sputtered bismuth screen-printed electrode: a promising alternative to other bismuth modifications in the voltammetric determination of Cd(II) and Pb(II) ions in groundwater. Talanta 119:348CrossRefGoogle Scholar
  21. 21.
    Gich M, Fernández-Sánchez C, Cotet LC, Niu P, Roig A (2013) Facile synthesis of porous bismuth-carbon nanocomposites for the sensitive detection of heavy metals. J Mater Chem A 1:11410CrossRefGoogle Scholar
  22. 22.
    Niu P, Fernández-Sánchez C, Gich M, Ayora C, Roig A (2015) Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes. Electrochim Acta 165:155CrossRefGoogle Scholar
  23. 23.
    Analytical Methods Committee (1987) Recommendations for the definition, estimation and use of the detection limit. Analyst 112:199CrossRefGoogle Scholar
  24. 24.
    (2013) Council Directive 2013/35/EC on environmental quality standards in the field of water policyGoogle Scholar
  25. 25.
    (2009) U.S. EPA National Primary Drinking Water RegulationsGoogle Scholar
  26. 26.
    (2011) WHO Guidelines for Drinking-water Quality, 4th editionGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Pengfei Niu
    • 1
  • César Fernández-Sánchez
    • 2
  • Martí Gich
    • 1
  • Carla Navarro-Hernández
    • 3
  • Pablo Fanjul-Bolado
    • 3
  • Anna Roig
    • 1
  1. 1.Institut de Ciència de Materials de Barcelona, ICMAB (CSIC)BellaterraSpain
  2. 2.Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC)BellaterraSpain
  3. 3.DropSens, S.L., Ed. CEEILlaneraSpain

Personalised recommendations