Microchimica Acta

, Volume 183, Issue 1, pp 297–304 | Cite as

Enzyme-free electrochemical detection of microRNA-21 using immobilized hairpin probes and a target-triggered hybridization chain reaction amplification strategy

  • Hongying LiuEmail author
  • Xiaoqiong Bei
  • Qiuting Xia
  • Yan Fu
  • Shi Zhang
  • Maochuan Liu
  • Kai Fan
  • Mingzhen Zhang
  • Yong Yang
Original Paper


We describe a sensitive enzyme-free bioassay for the determination of microRNA-21. It is based on a combination of target-triggered hybridization chain reaction, tagging with CdTe quantum dots (QDs), and anodic stripping voltammetry. Firstly, a thiolated capture hairpin probe SH-HP1 was immobilized on the surface of a gold electrode. HP1 unfolds in the presence of microRNA-21. If hairpin probe 2 (HP2) is present, a HP1-HP2 complex will be formed which possesses an exposed stem of HP2, and microRNA is released in parallel. The released microRNA-21 triggers a hybridization chain reaction and this leads to form an exposed DNA segment of HP2 and cycle use microRNA-21. With the aid of assistant DNA A1 and A2, the exposed DNA segment of HP2 progressed to a long double strand. The strand is rich in CdTe QDs with the help of QDs-A1. Then, the attached QDs were dissolved with HNO3 to give dissolved Cd(II) ions. Finally, the corresponding electrochemical current response of Cd(II) is monitored by anodic stripping voltammetry and used to quantify the concentration of microRNA-21. More microRNA-21 participated in this reaction increases the number of CdTe QDs, which results in increased electrochemical current. Thus, an ultrasensitive detection of microRNA-21 is accomplished by anodic stripping voltammetry. This gene assay displays a detection limit as low as 33 aM. It can discriminate between complementary DNA sequence and single-base mismatched DNA, indicating its high specificity.


Micro RNA Anodic stripping voltammetry Quantum dots tagging Gene assay Enzyme-free electrochemical biosensor Hybridization chain reaction 



This work was financially supported by the State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1305) and the National Natural Science Foundation of China (21405029, 51173035).

Supplementary material

604_2015_1636_MOESM1_ESM.doc (225 kb)
ESM 1 (DOC 225 kb)


  1. 1.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297CrossRefGoogle Scholar
  2. 2.
    Pasquinelli A (2012) MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13(4):271–282Google Scholar
  3. 3.
    Cullen B (2009) Viral and cellular messenger RNA targets of viral microRNAs. Nature 457(7228):421–425CrossRefGoogle Scholar
  4. 4.
    Dong HF, Zhang J, Ju HX, Lu HT, Wang SY, Jin S, Hao KH, Du HW, Zhang XJ (2012) Highly sensitive multiple microRNA detection based on fluorescence quenching of graphene oxide and isothermal strand-displacement polymerase reaction. Anal Chem 84:4587–4593CrossRefGoogle Scholar
  5. 5.
    Dong HF, Hao KH, Tian YP, Jin S, Lu HT, Zhou SF, Zhang XJ (2014) Label-free and ultrasensitive microRNA detection based on novel molecular beacon binding readout and target recycling amplification. Biosens Bioelectron 53:377–383CrossRefGoogle Scholar
  6. 6.
    Wang F, Zheng Z, Guo J, Ding X (2010) Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol 119:586–593CrossRefGoogle Scholar
  7. 7.
    Liu LZ, Song C, Zhang Z, Yang J, Zhou LL, Zhang X, Xie GM (2015) Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction. Biosens Bioelectron 70:351–357CrossRefGoogle Scholar
  8. 8.
    Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW, Mourelatos Z (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161CrossRefGoogle Scholar
  9. 9.
    Markou A, Tsaroucha EG, Kaklamanis L, Fotinou M, Georgoulias V, Lianidou ES (2008) Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clin Chem 54:1696–1704CrossRefGoogle Scholar
  10. 10.
    Lee I, Ajay SS, Chen H, Maruyama A, Wang N, McInnis MG, Athey BD (2008) Discriminating single-base difference miRNA expressions using microassay probe design Guru (ProDeG). Nucleic Acids Res 36:e27–e36CrossRefGoogle Scholar
  11. 11.
    Deng HM, Ren YQ, Shen W, Gao ZQ (2013) An ultrasensitive homogeneous chemiluminescent assay for microRNA. Chem Commun 49:9401–9403CrossRefGoogle Scholar
  12. 12.
    Cheng Y, Lei JP, Chen YL, Ju HX (2014) Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters. Biosens Bioelectron 51:431–436CrossRefGoogle Scholar
  13. 13.
    Zhang P, Wu XY, Yuan R, Chai YQ (2015) An “off-on” electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplification for ultrasensitive detection of microRNA. Anal Chem 87:3202–3207CrossRefGoogle Scholar
  14. 14.
    Wang M, Yin HS, Shen NN, Xu ZN, Sun B, Ai SY (2014) Signal-on photoelectrochemical biosensor for microRNA detection based on Bi2S3 nanorods and enzymatic amplification. Biosens Bioelectron 53:232–237CrossRefGoogle Scholar
  15. 15.
    Zhang DC, Yan YR, Cheng W, Zhang W, Li YH, Ju HX, Ding SJ (2013) Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta 180:397–403CrossRefGoogle Scholar
  16. 16.
    Khan N, Cheng J, Pezacki JP, Berezovski MV (2011) Quantitative analysis of microRNA in blood serum with protein-facilitated affinity capillary electrophoresis. Anal Chem 83:6196–6201CrossRefGoogle Scholar
  17. 17.
    Gao XF, Xu H, Baloda M, Gurung AS, Xu LP, Wang T (2014) Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens Bioelectron 54:578–584CrossRefGoogle Scholar
  18. 18.
    Liu LZ, Jiang ST, Wang L, Zhang Z, Xie GM (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly (amidoamie) dendrimer composite with gold and silver nanoclusters. Microchim Acta 182:77–84CrossRefGoogle Scholar
  19. 19.
    Ramnani P, Gao Y, Ozsoz M, Mulchandani A (2013) Electronic detection of microRNA at attomolar level with high specificity. Anal Chem 85:8061–8064CrossRefGoogle Scholar
  20. 20.
    Yu YY, Chen ZG, Shi LJ, Yang F, Pan JB, Zhang BB, Sun DP (2014) Ultrasensitive electrochemical detection of microRNA based on an arched probe mediated isothermal exponential amplification. Anal Chem 86:8200–8205CrossRefGoogle Scholar
  21. 21.
    Liao Y, Huang R, Ma Z, Wu Y, Zhou X, Xing D (2014) Target-triggered enzyme-free amplification strategy for sensitive detection of microRNA in tumor cells and tissues. Anal Chem 86:4596–4604CrossRefGoogle Scholar
  22. 22.
    Li BL, Jiang Y, Chen X, Ellington AD (2012) Probing spatial organization of DNA strands using enzyme-free hairpin assembly circuits. J Am Chem Soc 134:13918–13921CrossRefGoogle Scholar
  23. 23.
    Ge Z, Lin MH, Wang P, Pei H, Yan J, Shi JY, Huang Q, He DN, Fan CH, Zuo XL (2014) Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor. Anal Chem 86:2124–2130CrossRefGoogle Scholar
  24. 24.
    Ding XJ, Yan YR, Li SQ, Zhang Y, Cheng W, Cheng Q, Ding SJ (2015) Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA supersandwich assemblies and streptavidin signal amplification. Anal Chim Acta 874:59–65CrossRefGoogle Scholar
  25. 25.
    Liao YH, Huang R, Ma ZK, Wu YX, Zhou XM, Xiung D (2014) Target-triggered enzyme-free amplification strategy for sensitive detection of microRNA in tumor cells and tissues. Anal Chem 86:4596–4604CrossRefGoogle Scholar
  26. 26.
    Liu HY, Xu SM, He ZM, Deng AP, Zhu JJ (2013) Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem 85:3385–3392CrossRefGoogle Scholar
  27. 27.
    Liu HY, Lou YB, Zhou F, Zhu H, Abdel-Halim ES, Zhu JJ (2015) An amplified electrochemical strategy using DNA-QDs dendrimer superstructure for the detection of thymine DNA glycosylase activity. Biosens Bioelectron 71:249–255CrossRefGoogle Scholar
  28. 28.
    Wang DC, Hu LH, Zhou HM, Abdel-Halim ES, Zhu JJ (2013) Molecular beacon structure mediated rolling circle amplification for ultrasensitive electrochemical detection of microRNA based on quantum dots tagging. Electrochem Commun 33:80–83CrossRefGoogle Scholar
  29. 29.
    Cheng YQ, Zhang X, Li ZP, Jiao XX, Wang YC, Zhang YL (2009) Highly sensitive determination of microRNA using target-primed and branched rolling-circle amplification. Angew Chem Int Ed 121:3318–3322CrossRefGoogle Scholar
  30. 30.
    Jonstrup SP, Koch J, Kjems J (2006) A microRNA detection system based on padlock probes and rolling circle amplification. RNA- Publ RNA Soc 12(9):1747–1752CrossRefGoogle Scholar
  31. 31.
    Chen J, Lozach J, Wickham G, Barnes B, Luo SJ, Mikoulitch I (2008) Highly sensitive and specific microRNA expression profiling using bead array technology. Nucleic Acids Res 36(14):87–96CrossRefGoogle Scholar
  32. 32.
    Yan JL, Li ZP, Liu CH, Cheng YQ (2010) Simple and sensitive detection of microRNAs with ligasechain reaction. Chem Commun 46:2432–2434CrossRefGoogle Scholar
  33. 33.
    Xia N, Zhang LP, Wang GF, Feng QQ, Liu L (2013) Label-free and sensitive strategy for microRNAs detection based on the formation of boronate ester bonds and the dual-amplification of gold nanoparticles. Biosens Bioelectron 47:461–466CrossRefGoogle Scholar
  34. 34.
    Kumar P, Johnston BH, Kazakov SA (2011) miR-ID: a novel, circularization-based platform for detection of microRNAs. RNA 17:365CrossRefGoogle Scholar
  35. 35.
    Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860CrossRefGoogle Scholar
  36. 36.
    Chen XJ, Wang YY, Zhou JJ, Wei Y, Li XH, Zhu JJ (2008) Electrochemical impedance immunosensor based on three-dimensionally ordered macroporous gold film. Anal Chem 80:2133–2140CrossRefGoogle Scholar
  37. 37.
    Pan YL, Guo ML, Nie Z, Huang Y, Pan CF, Zeng K, Zhang Y, Yao SZ (2010) Selective collection and detection of leukemia cells on a magnet-quartz crystal microbalance system using aptamer-conjugated magnetic beads. Biosens Bioelectron 25:1609–1614CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Hongying Liu
    • 1
    • 2
    Email author
  • Xiaoqiong Bei
    • 1
  • Qiuting Xia
    • 1
  • Yan Fu
    • 1
  • Shi Zhang
    • 1
  • Maochuan Liu
    • 1
  • Kai Fan
    • 1
  • Mingzhen Zhang
    • 1
  • Yong Yang
    • 1
  1. 1.College of Life Information Science & Instrument EngineeringHangzhou Dianzi UniversityHangzhouChina
  2. 2.State Key Lab of Analytical Chemistry for Life Science, Key Lab of Mesoscopic Chemistry of the MOE, and School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations