Microchimica Acta

, Volume 183, Issue 1, pp 83–90 | Cite as

Signal enhancement in amperometric peroxide detection by using graphene materials with low number of defects

  • Alexander Zöpfl
  • Masoumeh Sisakthi
  • Jonathan Eroms
  • Frank-Michael Matysik
  • Christoph Strunk
  • Thomas Hirsch
Original Paper


Two-dimensional carbon nanomaterials ranging from single-layer graphene to defective structures such as chemically reduced graphene oxide were studied with respect to their use in electrodes and sensors. Their electrochemical properties and utility in terms of fabrication of sensing devices are compared. Specifically, the electrodes have been applied to reductive amperometric determination of hydrogen peroxide. Low-defect graphene (SG) was obtained through mechanical exfoliation of natural graphite, while higher-defect graphenes were produced by chemical vapor deposition (CVDG) and by chemical oxidation of graphite and subsequent reduction (rGO). The carbonaceous materials were mainly characterized by Raman microscopy. They were applied as electrode material and the electrochemical behavior was investigated by chronocoulometry, cyclic voltammetry, electrochemical impedance spectroscopy and amperometry and compared to a carbon disc electrode. It is shown that the quality of the graphene has an enormous impact on the amperometric performance. The use of carbon materials with many defects (like rGO) does not result in a significant improvement in signal compared to a plain carbon disc electrode. The sensitivity is 173 mA · M−1 · cm−2 in case of using CVDG which is about 50 times better than that of a plain carbon disc electrode and about 7 times better than that of rGO. The limit of detection for hydrogen peroxide is 15.1 μM (at a working potential of −0.3 V vs SCE) for CVDG. It is concluded that the application of two-dimensional carbon nanomaterials offers large perspectives in amperometric detection systems due to electrocatalytic effects that result in highly sensitive detection.

Graphical abstract

Graphene materials prepared by different techniques were studied as electrode material for the electrochemical detection of H2O2. Materials comprising a less defective structure showed a significantly higher sensitivity.


Graphene Reduced graphene oxide Hydrogen peroxide Amperometry Electrical impedance spectroscopy Chronocoulometry Cyclic voltammetry Raman spectroscopy 



This work was supported by DFG Research Training Electronic Properties of Carbon Based Nanostructures (GRK 1570).

Supplementary material

604_2015_1600_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1314 kb).


  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi: 10.1126/science.1102896 CrossRefGoogle Scholar
  2. 2.
    Ferrari AC, Bonaccorso F, Fal’ko V, Novoselov KS, Roche S, Bøggild P, Borini S, Koppens FHL, Palermo V, Pugno N, Garrido JA, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman JN, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider GF, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko AN, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams GM, Hong BH, Ahn J-H, Kim JM, Zirath H, van Wees BJ, van der Zant H, Occhipinti L, Matteo AD, Kinloch IA, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil SRT, Tannock Q, Löfwander T, Kinaret J (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598–4810. doi: 10.1039/C4NR01600A CrossRefGoogle Scholar
  3. 3.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. doi: 10.1021/nl802558y CrossRefGoogle Scholar
  4. 4.
    Geim AK (2009) Graphene: status and prospects. Science 324:1530–1534. doi: 10.1126/science.1158877 CrossRefGoogle Scholar
  5. 5.
    Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16. doi: 10.1007/s00604-012-0871-9 CrossRefGoogle Scholar
  6. 6.
    Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613. doi: 10.1021/ac900136z CrossRefGoogle Scholar
  7. 7.
    Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. TrAC Trends Anal Chem 39:87–113. doi: 10.1016/j.trac.2012.06.004 CrossRefGoogle Scholar
  8. 8.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. doi: 10.1021/ja01539a017 CrossRefGoogle Scholar
  9. 9.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. doi: 10.1021/nn1006368 CrossRefGoogle Scholar
  10. 10.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710. doi: 10.1038/nature07719 CrossRefGoogle Scholar
  11. 11.
    Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18:3506–3514. doi: 10.1002/adfm.200800951 CrossRefGoogle Scholar
  12. 12.
    Novoselov KS, Fal′ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200. doi: 10.1038/nature11458 CrossRefGoogle Scholar
  13. 13.
    Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224. doi: 10.1038/nnano.2009.58 CrossRefGoogle Scholar
  14. 14.
    Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789. doi: 10.1002/adfm.200900377 CrossRefGoogle Scholar
  15. 15.
    Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188. doi: 10.1021/cr500023c CrossRefGoogle Scholar
  16. 16.
    Lu L-M, Qiu X-L, Zhang X-B, Shen G-L, Tan W, Yu R-Q (2013) Supramolecular assembly of enzyme on functionalized graphene for electrochemical biosensing. Biosens Bioelectron 45:102–107. doi: 10.1016/j.bios.2013.01.065 CrossRefGoogle Scholar
  17. 17.
    Chen S, Yuan R, Chai Y, Hu F (2012) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32. doi: 10.1007/s00604-012-0904-4 CrossRefGoogle Scholar
  18. 18.
    Cui X, Wu S, Li Y, Wan G (2014) Sensing hydrogen peroxide using a glassy carbon electrode modified with in-situ electrodeposited platinum-gold bimetallic nanoclusters on a graphene surface. Microchim Acta 182:265–272. doi: 10.1007/s00604-014-1321-7 CrossRefGoogle Scholar
  19. 19.
    Li S-J, Du J-M, Zhang J-P, Zhang M-J, Chen J (2014) A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2. Microchim Acta 181:631–638. doi: 10.1007/s00604-014-1164-2 CrossRefGoogle Scholar
  20. 20.
    Chen X, Wu G, Cai Z, Oyama M, Chen X (2013) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705. doi: 10.1007/s00604-013-1098-0 CrossRefGoogle Scholar
  21. 21.
    Yuping Lin XC (2015) Non-enzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with a nanocomposite made from carbon nanotubes and molybdenum disulfide. Microchim Acta. doi: 10.1007/s00604-015-1517-5 Google Scholar
  22. 22.
    Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105. doi: 10.1038/nnano.2007.451 CrossRefGoogle Scholar
  23. 23.
    Zöpfl A, Lemberger M-M, König M, Ruhl G, Matysik F-M, Hirsch T (2014) Reduced graphene oxide and graphene composite materials for improved gas sensing at low temperature. Faraday Discuss 173:403–414. doi: 10.1039/c4fd00086b CrossRefGoogle Scholar
  24. 24.
    Roddaro S, Pingue P, Piazza V, Pellegrini V, Beltram F (2007) The optical visibility of graphene: interference colors of ultrathin graphite on SiO2. Nano Lett 7:2707–2710. doi: 10.1021/nl071158l CrossRefGoogle Scholar
  25. 25.
    Ferrari AC, Robertson J (2000) Interpretation of raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. doi: 10.1103/PhysRevB.61.14095 CrossRefGoogle Scholar
  26. 26.
    Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. doi: 10.1103/PhysRevLett.97.187401 CrossRefGoogle Scholar
  27. 27.
    Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130. doi: 10.1063/1.1674108 CrossRefGoogle Scholar
  28. 28.
    Jin E, Lu X, Cui L, Chao D, Wang C (2010) Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochim Acta 55:7230–7234. doi: 10.1016/j.electacta.2010.07.029 CrossRefGoogle Scholar
  29. 29.
    Li L, Du Z, Liu S, Hao Q, Wang Y, Li Q, Wang T (2010) A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 82:1637–1641. doi: 10.1016/j.talanta.2010.07.020 CrossRefGoogle Scholar
  30. 30.
    Liu S, Tian J, Wang L, Li H, Zhang Y, Sun X (2010) Stable aqueous dispersion of graphene nanosheets: noncovalent functionalization by a polymeric reducing agent and their subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Macromolecules 43:10078–10083. doi: 10.1021/ma102230m CrossRefGoogle Scholar
  31. 31.
    Fu L, Lai G, Jia B, Yu A (2014) Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites. Electrocatalysis 6:72–76. doi: 10.1007/s12678-014-0219-9 CrossRefGoogle Scholar
  32. 32.
    Maji SK, Sreejith S, Mandal AK, Ma X, Zhao Y (2014) Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: a hybrid material for cancer cell detection through hydrogen peroxide sensing. ACS Appl Mater Interfaces 6:13648–13656. doi: 10.1021/am503110s CrossRefGoogle Scholar
  33. 33.
    Tapas Kuila SB (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105. doi: 10.1016/j.pmatsci.2012.03.002 CrossRefGoogle Scholar
  34. 34.
    Heydrich S, Hirmer M, Preis C, Korn T, Eroms J, Weiss D, Schüller C (2010) Scanning raman spectroscopy of graphene antidot lattices: evidence for systematic p-type doping. Appl Phys Lett 97:043113. doi: 10.1063/1.3474613 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Alexander Zöpfl
    • 1
  • Masoumeh Sisakthi
    • 2
  • Jonathan Eroms
    • 2
  • Frank-Michael Matysik
    • 1
  • Christoph Strunk
    • 2
  • Thomas Hirsch
    • 1
  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany
  2. 2.Institute of Experimental and Applied Physics, Micro- and NanophysicsUniversity of RegensburgRegensburgGermany

Personalised recommendations