Microchimica Acta

, Volume 182, Issue 13–14, pp 2299–2306 | Cite as

A nanocomposite consisting of graphene oxide and Fe3O4 magnetic nanoparticles for the extraction of flavonoids from tea, wine and urine samples

  • Jianrong Wu
  • Deli Xiao
  • Hongyan Zhao
  • Hua HeEmail author
  • Jun Peng
  • Cuixia Wang
  • Chan Zhang
  • Jia He
Original Paper


We describe a single-step solvothermal method for the preparation of nanocomposites consisting of graphene oxide and Fe3O4 nanoparticles (GO/Fe3O4). This material is shown to be useful as a magnetic sorbent for the extraction of flavonoids from green tea, red wine, and urine samples. The nanocomposite is taking advantage of the high surface area of GO and the magnetic phase separation feature of the magnetic sorbent. The nanocomposite is recyclable and was applied to the extraction of flavonoids prior to their determination by HPLC. The effects of amount of surfactant, pH value of the sample solution, extraction time, and desorption condition on the extraction efficiency, and the regeneration conditions were optimized. The limits of detection for luteolin, quercetin and kaempferol range from 0.2 to 0.5 ng∙ mL−1 in urine, from 3.0 to 6.0 ng∙mL−1 in green tea, and from 1.0 to 2.5 ng∙mL−1 in red wine. The recoveries are between 82.0 and 101.4 %, with relative standard deviations of <9.3 %.

Graphical abstract

The article describes a method for magnetic solid-phase extraction (MSPE) of trace amounts of natural substances in complex samples by using graphene oxide (GO)-Fe3O4nanoparticles as the sorbent.


Graphene oxide-Fe3O4 Nanocomposite Magnetic solid phase extraction Vibrating sample magnetometer Flavonoids High performance liquid chromatography HPLC 



This work was supported by the National Natural Science Foundation of China (Grant No. 81402899), the Open Project of Key Laboratory of Modern Toxicology of the Ministry of Education (Grant No. NMUMT201404), National Basic Science Personal Training Fund (No. J0630858) and the Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University.

Supplementary material

604_2015_1575_MOESM1_ESM.doc (235 kb)
ESM 1 (DOC 235 kb)


  1. 1.
    Ishii K, Furuta T, Kasuya Y (2003) High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection. J Chromatogr B 794(1):49–56. doi: 10.1016/s1570-0232(03)00398-2 CrossRefGoogle Scholar
  2. 2.
    Han D, Row KH (2011) Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantification. J Sci Food Agric 91(15):2888–2892. doi: 10.1002/jsfa.4553 CrossRefGoogle Scholar
  3. 3.
    de Rijke E, Out P, Niessen WM, Ariese F, Gooijer C, Brinkman UA (2006) Analytical separation and detection methods for flavonoids. J Chromatogr A 1112(1–2):31–63. doi: 10.1016/j.chroma.2006.01.019 CrossRefGoogle Scholar
  4. 4.
    Hanhineva K, Torronen R, Bondia-Pons I, Pekkinen J, Kolehmainen M, Mykkanen H, Poutanen K (2010) Impact of dietary polyphenols on carbohydrate metabolism. Int J Mol Sci 11(4):1365–1402. doi: 10.3390/ijms11041365 CrossRefGoogle Scholar
  5. 5.
    Castro-Lopez Mdel M, Lopez-Vilarino JM, Gonzalez-Rodriguez MV (2014) Analytical determination of flavonoids aimed to analysis of natural samples and active packaging applications. Food Chem 150:119–127. doi: 10.1016/j.foodchem.2013.10.156 CrossRefGoogle Scholar
  6. 6.
    Qiu F, Li Z, He L, Wang D (2013) HPLC-ESI-MS/MS analysis and pharmacokinetics of luteoloside, a potential anticarcinogenic component isolated from Lonicera japonica, in beagle dogs. Biomed Chromatogr BMC 27(3):311–317. doi: 10.1002/bmc.2793 Google Scholar
  7. 7.
    Stecher G, Huck CW, Popp M, Bonn GK (2001) Determination of flavonoids and stilbenes in red wine and related biological products by HPLC and HPLC–ESI–MS–MS. Fresenius J Anal Chem 371(1):73–80. doi: 10.1007/s002160100898 CrossRefGoogle Scholar
  8. 8.
    Hadjmohammadi M, Karimiyan H, Sharifi V (2013) Hollow fibre-based liquid phase microextraction combined with high-performance liquid chromatography for the analysis of flavonoids in Echinophora platyloba DC and Mentha piperita. Food Chem 141(2):731–735. doi: 10.1016/j.foodchem.2013.02.083 CrossRefGoogle Scholar
  9. 9.
    de Vries JHM, Hollman PC, Meyboom S, Buysman MNCP, Zock PL, van Staveren WA, Katan MB (1998) Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. Am J Clin Nutr 68:60–65Google Scholar
  10. 10.
    Young JF, Nielsen SE, Haraldsdóttir J, Daneshvar B, Lauridsen ST, Knuthsen P, Crozier A, Sandström B, Dragsted LO (1999) Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. Am J Clin Nutr 69:87–94Google Scholar
  11. 11.
    Jones DJL, Lim CK, Ferry DR, Gescher A (1998) Determination of quercetin in human plasma by HPLC with spectrophotometric or electrochemical detection. Biomed Chromatogr 12:232–235CrossRefGoogle Scholar
  12. 12.
    Luo J, Zhang J, Lin J, Wang J, Yang P (2014) Enrichment and sensitive detection of polyphenolic compounds via β-cyclodextrin functionalized fluorescent gold nanorods. Microchim Acta 182(1–2):201–208. doi: 10.1007/s00604-014-1312-8 Google Scholar
  13. 13.
    Wu Q, Zhao G, Feng C, Wang C, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J Chromatogr A 1218(44):7936–7942. doi: 10.1016/j.chroma.2011.09.027 CrossRefGoogle Scholar
  14. 14.
    Wierucka M, Biziuk M (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. TrAC Trends Anal Chem 59:50–58. doi: 10.1016/j.trac.2014.04.007 CrossRefGoogle Scholar
  15. 15.
    Sitko R, Zawisza B, Malicka E (2013) Graphene as a new sorbent in analytical chemistry. TrAC Trends Anal Chem 51:33–43. doi: 10.1016/j.trac.2013.05.011 CrossRefGoogle Scholar
  16. 16.
    Meng J, Bu J, Deng C, Zhang X (2011) Preparation of polypyrrole-coated magnetic particles for micro solid-phase extraction of phthalates in water by gas chromatography–mass spectrometry analysis. J Chromatogr A 1218(12):1585–1591. doi: 10.1016/j.chroma.2011.01.057 CrossRefGoogle Scholar
  17. 17.
    van Eijkeren JC, Heringa MB, Hermens JL (2004) Modelling SPME data from kinetic measurements in complex samples. Analyst 129(11):1137–1142. doi: 10.1039/b407926d CrossRefGoogle Scholar
  18. 18.
    Agnes G, Oomen PM, Tolls J (2000) Nonequilibrium solid-phase microextraction for determination of the freely dissolved concentration of hydrophobic organic compounds: matrix effects and limitations. Anal Chem 72:2802–2808CrossRefGoogle Scholar
  19. 19.
    Han Q, Wang Z, Xia J, Chen S, Zhang X, Ding M (2012) Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 101:388–395. doi: 10.1016/j.talanta.2012.09.046 CrossRefGoogle Scholar
  20. 20.
    Yan S, Qi TT, Chen DW, Li Z, Li XJ, Pan SY (2014) Magnetic solid phase extraction based on magnetite/reduced graphene oxide nanoparticles for determination of trace isocarbophos residues in different matrices. J Chromatogr A 1347:30–38. doi: 10.1016/j.chroma.2014.04.073 CrossRefGoogle Scholar
  21. 21.
    Yang J, Si L, Cui S, Bi W (2014) Synthesis of a graphitic carbon nitride nanocomposite with magnetite as a sorbent for solid phase extraction of phenolic acids. Microchim Acta 182(3–4):737–744. doi: 10.1007/s00604-014-1381-8 Google Scholar
  22. 22.
    Hu XZ, Chen ML, Gao Q, Yu QW, Feng YQ (2012) Determination of benzimidazole residues in animal tissue samples by combination of magnetic solid-phase extraction with capillary zone electrophoresis. Talanta 89:335–341. doi: 10.1016/j.talanta.2011.12.038 CrossRefGoogle Scholar
  23. 23.
    Heidari H, Razmi H (2012) Multi-response optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC-UV. Talanta 99:13–21. doi: 10.1016/j.talanta.2012.04.023 CrossRefGoogle Scholar
  24. 24.
    Meng J, Shi C, Wei B, Yu W, Deng C, Zhang X (2011) Preparation of Fe3O4@C@PANI magnetic microspheres for the extraction and analysis of phenolic compounds in water samples by gas chromatography–mass spectrometry. J Chromatogr A 1218(20):2841–2847. doi: 10.1016/j.chroma.2011.03.044 CrossRefGoogle Scholar
  25. 25.
    He Z, Liu D, Li R, Zhou Z, Wang P (2012) Magnetic solid-phase extraction of sulfonylurea herbicides in environmental water samples by Fe3O4@dioctadecyl dimethyl ammonium chloride@silica magnetic particles. Anal Chim Acta 747:29–35. doi: 10.1016/j.aca.2012.08.015 CrossRefGoogle Scholar
  26. 26.
    Liu L, Feng T, Wang C, Wu Q, Wang Z (2014) Magnetic three-dimensional graphene nanoparticles for the preconcentration of endocrine-disrupting phenols. Microchim Acta 181(11–12):1249–1255. doi: 10.1007/s00604-014-1234-5 CrossRefGoogle Scholar
  27. 27.
    Alvand M, Shemirani F (2013) Preconcentration of trace cadmium ion using magnetic graphene nanoparticles as an efficient adsorbent. Microchim Acta 181(1–2):181–188. doi: 10.1007/s00604-013-1094-4 Google Scholar
  28. 28.
    Bai L-Z, Zhao D-L, Xu Y, Zhang J-M, Gao Y-L, Zhao L-Y, Tang J-T (2012) Inductive heating property of graphene oxide–Fe3O4 nanoparticles hybrid in an AC magnetic field for localized hyperthermia. Mater Lett 68:399–401. doi: 10.1016/j.matlet.2011.11.013 CrossRefGoogle Scholar
  29. 29.
    Wang W, Ma R, Wu Q, Wang C, Wang Z (2013) Fabrication of magnetic microsphere-confined graphene for the preconcentration of some phthalate esters from environmental water and soybean milk samples followed by their determination by HPLC. Talanta 109:133–140. doi: 10.1016/j.talanta.2013.02.008 CrossRefGoogle Scholar
  30. 30.
    Yang X, Wang Y, Huang X, Ma Y, Huang Y, Yang R, Duan H, Chen Y (2011) Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J Mater Chem 21(10):3448. doi: 10.1039/c0jm02494e CrossRefGoogle Scholar
  31. 31.
    Lu D, Zhang Y, Lin S, Wang L, Wang C (2013) Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. J Alloys Compd 579:336–342. doi: 10.1016/j.jallcom.2013.06.098 CrossRefGoogle Scholar
  32. 32.
    Liu Q, Shi J, Sun J, Wang T, Zeng L, Jiang G (2011) Graphene and graphene oxide sheets supported on silica as versatile and high-performance adsorbents for solid-phase extraction. Angew Chem Int Ed Engl 50(26):5913–5917. doi: 10.1002/anie.201007138 CrossRefGoogle Scholar
  33. 33.
    Liu Q, Shi J, Jiang G (2012) Application of graphene in analytical sample preparation. TrAC Trends Anal Chem 37:1–11. doi: 10.1016/j.trac.2012.03.011 CrossRefGoogle Scholar
  34. 34.
    Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274–6293. doi: 10.1039/b902394a CrossRefGoogle Scholar
  35. 35.
    Bi W, Tian M, Row KH (2013) Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J Chromatogr A 1285:22–30. doi: 10.1016/j.chroma.2013.02.041 CrossRefGoogle Scholar
  36. 36.
    Xiao D, Yuan D, He H, Pham-Huy C, Dai H, Wang C, Zhang C (2014) Mixed hemimicelle solid-phase extraction based on magnetic carbon nanotubes and ionic liquids for the determination of flavonoids. Carbon 72:274–286. doi: 10.1016/j.carbon.2014.01.075 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Jianrong Wu
    • 1
  • Deli Xiao
    • 1
  • Hongyan Zhao
    • 1
    • 3
  • Hua He
    • 1
    • 2
    Email author
  • Jun Peng
    • 1
  • Cuixia Wang
    • 1
  • Chan Zhang
    • 1
  • Jia He
    • 1
  1. 1.Department of Analytical ChemistryChina Pharmaceutical UniversityNanjingChina
  2. 2.Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of EducationChina Pharmaceutical UniversityNanjingChina
  3. 3.Department of Hygienic Analysis and Detection, School of Public HealthNanjing Medical UniversityNanjingChina

Personalised recommendations