Advertisement

Microchimica Acta

, Volume 182, Issue 13–14, pp 2215–2221 | Cite as

Sensing glucose based on its affinity for concanavalin A on a glassy carbon electrode modified with a C60 fullerene nanocomposite

  • Cui Ye
  • Xia Zhong
  • Yaqin Chai
  • Ruo Yuan
Original Paper

Abstract

An ultrasensitive electrochemical glucose biosensor has been developed by depositing C60-fullerene functionalized with tetraoctylammonium bromide (C60-TOAB+) on the surface of a glassy carbon electrode (GCE). The glucose-binding protein concanavalin A (Con A) was then linked to the surface. Binding of glucose by Con A affects the electroactivity of the reversible redox couple C60/C60 , and this finding forms the basis for a quantitative glucose assay over the 10 to 10 mM concentration range and with a lower detection limit of 3.3 nM (at an S/N ratio of 3). The sensitivity of this sensor allowed glucose to be determined in saliva. This biosensor possesses excellent selectivity, outstanding reproducibility and good long-term stability.

Graphical abstract

An ultrasensitive electrochemical glucose biosensor has been developed by depositing C60-fullerene functionalized with tetraoctylammonium bromide (C60-TOAB+) on the surface of a glassy carbon electrode (GCE). The glucose-binding protein concanavalin A (Con A) was then linked to the surface. Binding of glucose by Con A affects the electroactivity of the reversible redox couple C60/C60 , and this finding forms the basis for a quantitative glucose assay over the 10 to 10 mM concentration range and with a lower detection limit of 3.3 nM (at an S/N ratio of 3). The sensitivity of this sensor allowed glucose to be determined in saliva.

Keywords

C60-fullerene Tetraoctylammonium bromide Concanavalin A Redox couple Electrochemical biosensor 

Notes

Acknowledgments

This work was financially supported by the NNSF of China (21075100, 21275119, 21105081), Ministry of Education of China (Project 708073), Research Fund for the Doctoral Program of Higher Education (RFDP) (20110182120010), Natural Science Foundation of Chongqing City (CSTC-2009BA1003, CSTC-2011BA7003, CSTC-2010BB4121), State Key Laboratory of Silkworm Genome Biology (sklsgb2013012), the Fundamental Research Funds for the Central Universities (XDJK2013A008, XDJK2013A27, XDJK2013C115), and specialized research fund for the doctoral program of higher education (swu113029) and (20100182110015) China.

Supplementary material

604_2015_1559_MOESM1_ESM.doc (464 kb)
ESM 1 (DOC 463 kb)

References

  1. 1.
    Zhang L, Ni YH, Li H (2010) Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim Acta 171:103–108CrossRefGoogle Scholar
  2. 2.
    Chen C, Xie QJ, Yang DW, Xiao HL, Fu YY, Tan YM, Yao SZ (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491CrossRefGoogle Scholar
  3. 3.
    Ronkainen NJ, Halsall HB, Heineman WR (2010) Electrochemical biosensors. Chem Soc Rev 39:1747–1763CrossRefGoogle Scholar
  4. 4.
    Wang JP, Thomas DF, Chen AC (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004CrossRefGoogle Scholar
  5. 5.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825CrossRefGoogle Scholar
  6. 6.
    Lim SH, Wei J, Lin JY, Li QT, You JK (2005) A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto nafion-solubilized carbon nanotube electrode. Biosens Bioelectron 20:2341–2346CrossRefGoogle Scholar
  7. 7.
    Cetik S, Zhang Y, Hupkens E, Jurysta C, Malaisse WJ, Sener A (2013) A tentative model for D-glucose turnover in human saliva. Oral Biol 58:1265–1270CrossRefGoogle Scholar
  8. 8.
    Ye DX, Liang GH, Li HX, Luo J, Zhang S, Chen H, Kong JL (2013) A novel nonenzymatic sensor based on CuO nanoneedle/graphene/carbon nanofiber modified electrode for probing glucose in saliva. Talanta 116:223–230CrossRefGoogle Scholar
  9. 9.
    Rowe L, Deo S, Shofner J, Ensor M, Daunert S (2007) Aequorin-based homogeneous cortisol immunoassay for analysis of saliva samples. Bioconjug Chem 18:1772–1777CrossRefGoogle Scholar
  10. 10.
    Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181:689–705CrossRefGoogle Scholar
  11. 11.
    Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839CrossRefGoogle Scholar
  12. 12.
    Becker JW, Reeke GN, Cunningham BA, Edelman GM (1976) New evidence on the location of the saccharide-binding site of concanavalin A. Nature 259:406–409CrossRefGoogle Scholar
  13. 13.
    Liu SQ, Wang KW, Du D, Sun YM, He L (2007) Recognition of glycoprotein peroxidase via Con A-carrying self-assembly layer on Gold. Biomacromolecules 8:2142–2148CrossRefGoogle Scholar
  14. 14.
    Dam TK, Brewer CF (2002) Thermodynamic studies of lectin-carbohydrate interactions by isothermal titration calorimetry. Chem Rev 102:387–429CrossRefGoogle Scholar
  15. 15.
    Hu FX, Chen SH, Wang CC, Yuan R, Xiang Y, Wang C (2012) Multi-wall carbon nanotube-polyaniline biosensor based on lectin-carbohydrate affinity for ultrasensitive detection of Con A. Biosens Bioelectron 34:202–207CrossRefGoogle Scholar
  16. 16.
    Scida K, Stege PW, Haby G, Messina GA, García CD (2011) Recent applications of carbon-based nanomaterials in analytical chemistry: Critical review. Anal Chim Acta 691:6–17CrossRefGoogle Scholar
  17. 17.
    Kroto HW, Heath JR, O Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–162CrossRefGoogle Scholar
  18. 18.
    Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354–354CrossRefGoogle Scholar
  19. 19.
    Ye C, Zhong X, Yuan R, Chai YQ (2014) A novel ECL biosensor based on C60 embedded in tetraoctylammonium bromide for the determination of glucose. Sens Actuators B: Chem 199:101–107CrossRefGoogle Scholar
  20. 20.
    Qian L, Yang XR (2007) Effective enhancement of peroxydisulfate electrochemiluminescence on C60/DDAB films. Electrochem Commun 9:393–397CrossRefGoogle Scholar
  21. 21.
    Jehoulet C, Bard AJ (1991) Electrochemical reduction and oxidation of C60 films. J Am Chem Soc 113:5456–5457CrossRefGoogle Scholar
  22. 22.
    Chlistunoff J, Cliffel D, Bard AJ (1995) Electrochemistry of fullerene films. Thin Solid Films 257:166–184CrossRefGoogle Scholar
  23. 23.
    Nakashima N, Tokunaga T, Nonaka Y, Nakanishi T, Murakami H, Sagara T (1998) A fullerene/lipid electrode device: reversible electron transfer reaction of C60 embedded in a cast film of an artificial ammonium lipid on an electrode in aqueous solution. Angew Chem Int Ed 37:2671–2673CrossRefGoogle Scholar
  24. 24.
    Nakashima N, Ishii T, Shirakusa M, Nakanishi T, Murakami H, Sagara T (2001) Molecular bilayer-based superstructures of a fullerene-carrying ammonium amphiphile: structure and electrochemistry. Chem Eur J 7:1766–1772CrossRefGoogle Scholar
  25. 25.
    Nakanishi T, Morita M, Murakami H, Sagara T, Nakashima N (2002) Structure and electrochemistry of self-organized fullerene-lipid bilayer films. Chem Eur J 8:1641–1648CrossRefGoogle Scholar
  26. 26.
    Li GB, Han Z, Piao GZ, Zhao J, Li SX, Liu GY (2009) To distinguish fullerene C60 nanotubes and C60 nanowhiskers using Raman spectroscopy. Mater Sci Eng B 163:161–164CrossRefGoogle Scholar
  27. 27.
    Hsieh SN, Hsiao SW, Chen TY, Li CY, Lee CH, Guo TF, Hsu YJ, Lin TL, Wei Y, Wen TW (2011) Self-assembled tetraoctylammonium bromide as an electron-injection layer for cathode-independent high-efficiency polymer light-emitting diodes. J Mater Chem 21:8715–8720CrossRefGoogle Scholar
  28. 28.
    Calvaresi M, Zerbetto F (2010) Baiting proteins with C60. ACS Nano 4:2283–2299CrossRefGoogle Scholar
  29. 29.
    Guldi DM (2002) Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models. Chem Soc Rev 31:22–36CrossRefGoogle Scholar
  30. 30.
    Zhong X, Yuan R, Chai YQ (2012) In situ spontaneous reduction synthesis of spherical Pd@Cys-C60 nanoparticles and its application in nonenzymatic glucose biosensors. Chem Commun 48:597–599CrossRefGoogle Scholar
  31. 31.
    Imahori H, Tamaki K, Araki Y, Sekiguchi Y, Ito O, Sakata Y, Fukuzumi S (2002) Stepwise charge separation and charge recombination in ferrocene-meso, meso-linked porphyrin dimer-fullerene triad. J Am Chem Soc 124:5165–5174CrossRefGoogle Scholar
  32. 32.
    Valcárcel M, Cárdenas S, Simonet BM (2007) Role of carbon nanotubes in analytical science. Anal Chem 79:4788–4797CrossRefGoogle Scholar
  33. 33.
    Chen D, Feng HB, Li JH (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053CrossRefGoogle Scholar
  34. 34.
    Ambrosi A, Chua CK, Bonanni A, Pumera M (2014) Electrochemistry of graphene and related materials. Chem Rev 114:7150–7188CrossRefGoogle Scholar
  35. 35.
    Ballerstadt R, Kholodnykh A, Evans C, Boretsky A, Motamedi M, Gowda A, McNichols R (2007) Affinity-based turbidity sensor for glucose monitoring by optical coherence tomography: toward the development of an implantable sensor. Anal Chem 79:6965–6974CrossRefGoogle Scholar
  36. 36.
    Xu X, Jiang N, Hu Z, Liu SQ (2010) Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and Its application for biosensing. ACS Nano 4:4292–4298CrossRefGoogle Scholar
  37. 37.
    Liu S, Tian JQ, Wang L, Qin XY, Zhang YW, Luo YL (2012) A simple route for preparation of highly stable CuO nanoparticles for nonenzymatic glucose detection. Catal Sci Technol 2:813–817CrossRefGoogle Scholar
  38. 38.
    Zhang D, Zhang K, Yao YL, Xia XH, Chen HY (2004) Multilayer assembly of prussian blue nanoclusters and enzyme-immobilized poly (toluidine blue) films and its application in glucose biosensor construction. Langmuir 20:7303–7307CrossRefGoogle Scholar
  39. 39.
    Qiang LL, Vaddiraju S, Patel D, Papadimitrakopoulos F (2011) Edge-plane microwire electrodes for highly sensitive H2O2 and glucose detection. Biosens Bioelectron 26:3755–3760CrossRefGoogle Scholar
  40. 40.
    Fu YC, Li PH, Xie QJ, Xu XH, Lei LH, Chen C, Zou C, Deng WF, Yao SZ (2009) One-Pot preparation of polymer-enzyme-metallic nanoparticle composite films for high-performance biosensing of glucose and galactose. Adv Funct Mater 19:1784–1791CrossRefGoogle Scholar
  41. 41.
    Jia X, Hu GZ, Nitze F, Barzegar HR, Sharifi T, Tai CW, Wagberg T (2013) Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection. Appl Mater Inter 5:12017–12022CrossRefGoogle Scholar
  42. 42.
    Pleitez MA, Lieblein T, Bauer A, Hertzberg O (2013) In vivo noninvasive monitoring of glucose concentration in human epidermis by mid-infrared pulsed photoacoustic spectroscopy. Anal Chem 85:1013–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  1. 1.Key Laboratory of Luminescent and Real-Time Analytical Chemistry, College of Chemistry and Chemical EngineeringSouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations