Microchimica Acta

, Volume 182, Issue 13–14, pp 2165–2172 | Cite as

Enzymatic glucose biosensor based on bismuth nanoribbons electrochemically deposited on reduced graphene oxide

  • Rajkumar Devasenathipathy
  • Raj Karthik
  • Shen-Ming Chen
  • Mohammad Ajmal Ali
  • Veerappan Mani
  • Bih-Show Lou
  • Fahad Mohammed Abdullrahman Al-Hemaid
Original Paper

Abstract

We describe the electrochemical preparation of bismuth nanoribbons (Bi-NRs) with an average length of 100 ± 50 nm and a width of 10 ± 5 μm by a potentiostatic method. The process occurs on the surface of a glassy carbon electrode (GCE) in the presence of disodium ethylene diamine tetraacetate that acts as a scaffold for the growth of the Bi-NRs and also renders them more stable. The method was applied to the preparation of Bi-NRs incorporated into reduced graphene oxide. This nanocomposite was loaded with the enzyme glucose oxidase onto a glassy carbon electrode. The resulting biosensor displays an enhanced redox peak for the enzyme with a peak-to-peak separation of about 28 mV, revealing a fast electron transfer at the modified electrode. The loading of the GCE with electroactive GOx was calculated to be 8.54 × 10−10 mol∙cm−2, and the electron transfer rate constant is 4.40 s−1. Glucose can be determined (in the presence of oxygen) at a relatively working potential of −0.46 V (vs. Ag|AgCl) in the 0.5 to 6 mM concentration range, with a 104 μM lower detection limit. The sensor also displays appreciable repeatability, reproducibility and remarkable stability. It was successfully applied to the determination of glucose in human serum samples.

Graphical Abstract

A potentiostatic method was used to prepare reduced graphene oxide and bismuth nanoribbons nanocomposite on a glassy carbon electrode. This nanocomposite was loaded with enzyme glucose oxidase to fabricate a glucose biosensor.

Keywords

Potentiostatic method Bismuth nanoribbons Glucose oxidase Biosensor Reduced graphene oxide 

Notes

Acknowledgments

This project was supported by the Ministry of Science and Technology and the Ministry of Education of Taiwan (Republic of China). Research supported by the King Saud University, Deanship of Scientific Research, College of Science- Research Center.

Supplementary material

604_2015_1545_MOESM1_ESM.docx (334 kb)
ESM 1(DOCX 333 kb)

References

  1. 1.
    Malakhova N, Mysik A, Saraeva SY, Stozhko NY, Uimin M, Ermakov A, Brainina KZ (2010) A voltammetric sensor on the basis of bismuth nanoparticles prepared by the method of gas condensation. J Anal Chem 65(6):640–647CrossRefGoogle Scholar
  2. 2.
    Mayorga-Martinez CC, Cadevall M, Guix M, Ros J, Merkoçi A (2013) Bismuth nanoparticles for phenolic compounds biosensing application. Biosens Bioelectron 40(1):57–62CrossRefGoogle Scholar
  3. 3.
    Crosnier O, Brousse T, Devaux X, Fragnaud P, Schleich DM (2001) New anode systems for lithium ion cells. J Power Sources 94(2):169–174. doi:10.1016/S0378-7753(00)00599-1 CrossRefGoogle Scholar
  4. 4.
    Li B, Gu M, Nie Z, Shao Y, Luo Q, Wei X, Li X, Xiao J, Wang C, Sprenkle V (2013) Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery. Nano Lett 13(3):1330–1335CrossRefGoogle Scholar
  5. 5.
    Ge R, Sun H (2007) Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. Acc Chem Res 40(4):267–274CrossRefGoogle Scholar
  6. 6.
    Yu L, Fortuna F, O’Donnell B, Jeon T, Foldyna M, Picardi G, Roca i Cabarrocas P (2012) Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells. Nano Lett 12(8):4153–4158CrossRefGoogle Scholar
  7. 7.
    de Lima CA, Spinelli A (2013) Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochim Acta 107:542–548CrossRefGoogle Scholar
  8. 8.
    Gich M, Fernández-Sánchez C, Cotet LC, Niu P, Roig A (2013) Facile synthesis of porous bismuth–carbon nanocomposites for the sensitive detection of heavy metals. J Mater Chem A 1(37):11410–11418CrossRefGoogle Scholar
  9. 9.
    Chen X, Chen S, Huang W, Zheng J, Li Z (2009) Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes. Electrochim Acta 54(28):7370–7373CrossRefGoogle Scholar
  10. 10.
    Kim SH, Choi Y-S, Kang K, Yang SI (2007) Controlled growth of bismuth nanoparticles by electron beam irradiation in TEM. J Alloys Compd 427(1):330–332CrossRefGoogle Scholar
  11. 11.
    An’amt MN, Radiman S, Huang NM, Yarmo MA, Ariyanto NP, Lim HN, Muhamad MR (2010) Sol–gel hydrothermal synthesis of bismuth–TiO2 nanocubes for dye-sensitized solar cell. Ceram Int 36(7):2215–2220. doi:10.1016/j.ceramint.2010.05.027 CrossRefGoogle Scholar
  12. 12.
    Xue F, Fei G, Wu B, Cui P, Zhang L (2005) Direct electrodeposition of highly dense Bi/Sb superlattice nanowire arrays. J Am Chem Soc 127(44):15348–15349CrossRefGoogle Scholar
  13. 13.
    Jiang S, Huang Y-H, Luo F, Du N, Yan C-H (2003) Synthesis of bismuth with various morphologies by electrodeposition. Inorg Chem Commun 6(6):781–785CrossRefGoogle Scholar
  14. 14.
    Zhou L, Dai Y, Zhang H, Jia Y, Zhang J, Li C (2012) Nucleation and growth of bismuth electrodeposition from alkaline electrolyte. Bull Kor Chem Soc 33(5):1541–1546CrossRefGoogle Scholar
  15. 15.
    Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32):3558–3563CrossRefGoogle Scholar
  16. 16.
    Chappaz-Gillot C, Salazar R, Berson S, Ivanova V (2013) Insights into CuSCN nanowire electrodeposition on flexible substrates. Electrochim Acta 110:375–381CrossRefGoogle Scholar
  17. 17.
    Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036CrossRefGoogle Scholar
  18. 18.
    Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41(6):2283–2307CrossRefGoogle Scholar
  19. 19.
    Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29(9):954–965CrossRefGoogle Scholar
  20. 20.
    Wang X, Zhang X (2013) Electrochemical co-reduction synthesis of graphene/nano-gold composites and its application to electrochemical glucose biosensor. Electrochim Acta 112:774–782CrossRefGoogle Scholar
  21. 21.
    Meng L, Xia Y, Liu W, Zhang L, Zou P, Zhang Y (2015) Hydrogen microexplosion synthesis of platinum nanoparticles/nitrogen doped graphene nanoscrolls as new amperometric glucose biosensor. Electrochim Acta 152:330–337CrossRefGoogle Scholar
  22. 22.
    Zeng Q, Cheng J-S, Liu X-F, Bai H-T, Jiang J-H (2011) Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor. Biosens Bioelectron 26(8):3456–3463CrossRefGoogle Scholar
  23. 23.
    Fulati A, Ali SMU, Asif MH, Willander M, Brännmark C, Strålfors P, Börjesson SI, Elinder F, Danielsson B (2010) An intracellular glucose biosensor based on nanoflake ZnO. Sensors Actuators B Chem 150(2):673–680CrossRefGoogle Scholar
  24. 24.
    Karuppiah C, Palanisamy S, Chen S-M, Veeramani V, Periakaruppan P (2014) A novel enzymatic glucose biosensor and sensitive non-enzymatic hydrogen peroxide sensor based on graphene and cobalt oxide nanoparticles composite modified glassy carbon electrode. Sensors Actuators B Chem 196:450–456CrossRefGoogle Scholar
  25. 25.
    Chu X, Zhu X, Dong Y, Chen T, Ye M, Sun W (2012) An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods. J Electroanal Chem 676:20–26CrossRefGoogle Scholar
  26. 26.
    Saleh FS, Mao L, Ohsaka T (2011) Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell. Sensors Actuators B Chem 152(1):130–135CrossRefGoogle Scholar
  27. 27.
    Yamamoto K, Matsumoto T, Shimada S, Tanaka T, Kondo A (2013) Starchy biomass-powered enzymatic biofuel cell based on amylases and glucose oxidase multi-immobilized bioanode. New Biotechnol 30(5):531–535CrossRefGoogle Scholar
  28. 28.
    Shi X, Gu W, Li B, Chen N, Zhao K, Xian Y (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181(1–2):1–22CrossRefGoogle Scholar
  29. 29.
    Demirkol DO, Yildiz HB, Sayın S, Yilmaz M (2014) Enzyme immobilization in biosensor constructions: self-assembled monolayers of calixarenes containing thiols. RSC Adv 4(38):19900–19907CrossRefGoogle Scholar
  30. 30.
    Devasenathipathy R, Mani V, Chen S-M, Arulraj D, Vasantha VS (2014) Highly stable and sensitive amperometric sensor for the determination of trace level hydrazine at cross linked pectin stabilized gold nanoparticles decorated graphene nanosheets. Electrochim Acta 135:260–269. doi:10.1016/j.electacta.2014.05.002 CrossRefGoogle Scholar
  31. 31.
    Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem Eng J 251:422–434CrossRefGoogle Scholar
  32. 32.
    Bard AJ, Faulkner LR (2001) Fundamentals and applications. Electrochemical methods, 2nd edn. Wiley, New YorkGoogle Scholar
  33. 33.
    Liu Q, Lu X, Li J, Yao X, Li J (2007) Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron 22(12):3203–3209CrossRefGoogle Scholar
  34. 34.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108(2):814–825CrossRefGoogle Scholar
  35. 35.
    Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25(4):901–905CrossRefGoogle Scholar
  36. 36.
    Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2(9):1825–1832CrossRefGoogle Scholar
  37. 37.
    Liu S, Ju H (2003) Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron 19(3):177–183CrossRefGoogle Scholar
  38. 38.
    Hui J, Cui J, Xu G, Adeloju SB, Wu Y (2013) Direct electrochemistry of glucose oxidase based on Nafion-Graphene-GOD modified gold electrode and application to glucose detection. Mater Lett 108:88–91CrossRefGoogle Scholar
  39. 39.
    Zhang L, Yuan S-M, Yang L-M, Fang Z, G-c Z (2013) An enzymatic glucose biosensor based on a glassy carbon electrode modified with manganese dioxide nanowires. Microchim Acta 180(7–8):627–633CrossRefGoogle Scholar
  40. 40.
    You C, Li X, Zhang S, Kong J, Zhao D, Liu B (2009) Electrochemistry and biosensing of glucose oxidase immobilized on Pt-dispersed mesoporous carbon. Microchim Acta 167(1–2):109–116CrossRefGoogle Scholar
  41. 41.
    Karuppiah C, Palanisamy S, Chen S-M, Veeramani V, Periakaruppan P (2014) Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Microchim Acta 181(15–16):1843–1850CrossRefGoogle Scholar
  42. 42.
    Dey RS, Raj CR (2013) A hybrid functional nanoscaffold based on reduced graphene oxide–ZnO for the development of an amperometric biosensing platform. RSC Adv 3(48):25858–25864CrossRefGoogle Scholar
  43. 43.
    Wang W, Xie Y, Wang Y, Du H, Xia C, Tian F (2014) Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays. Microchim Acta 181(3–4):381–387CrossRefGoogle Scholar
  44. 44.
    Deng S, Jian G, Lei J, Hu Z, Ju H (2009) A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes. Biosens Bioelectron 25(2):373–377CrossRefGoogle Scholar
  45. 45.
    Razmi H, Mohammad-Rezaei R (2013) Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosens Bioelectron 41:498–504CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Rajkumar Devasenathipathy
    • 1
  • Raj Karthik
    • 1
  • Shen-Ming Chen
    • 1
  • Mohammad Ajmal Ali
    • 2
  • Veerappan Mani
    • 1
  • Bih-Show Lou
    • 3
  • Fahad Mohammed Abdullrahman Al-Hemaid
    • 2
  1. 1.Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiRepublic of China
  2. 2.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Chemistry Division, Center for General EducationChang Gung UniversityTao-YuanTaiwan

Personalised recommendations