Microchimica Acta

, Volume 182, Issue 11–12, pp 1941–1948 | Cite as

Nanostructured polypyrrole for automated and electrochemically controlled in-tube solid-phase microextraction of cationic nitrogen compounds

  • Hamid Asiabi
  • Yadollah Yamini
  • Fatemeh Rezaei
  • Shahram Seidi
Original Paper


The authors describe an efficient method for microextraction and preconcentration of trace quantities of cationic nitrogen compounds, specifically of anilines. It relies on a combination of electrochemically controlled solid-phase microextraction and on-line in-tube solid-phase microextraction (SPME) using polypyrrole-coated capillaries. Nanostructured polypyrrole was electrically deposited on the inner surface of a stainless steel tube and used as the extraction phase. It also acts as a polypyrrole electrode that was used as a cation exchanger, and a platinum electrode that was used as the anode. The solution to be extracted is passed over the inner surface of the polypyrrole electrode, upon which cations are extracted by applying a negative potential under flow conditions. This method represents an ideal technique for SPME of protonated anilines because it is fast, easily automated, solvent-free, and inexpensive. Under optimal conditions, the limits of detection are in the 0.10–0.30 μg L‾1 range. The method works in the 0.10 to 300 μg L‾1 concentration range. The inter- and intra-assay precisions (RSD%; for n = 3) range from 5.1 to 7.5 % and from 4.7 to 6.0 % at the concentration levels of 2, 10 and 20 μg L‾1, respectively. The EC-in-tube SPME method was successfully applied to the analysis of methyl-, 4-chloro-, 3-chloro and 3,4-dichloroanilines in (spiked) water samples.

Graphical Abstract


Electrochemically controlled solid phase microextraction In-tube solid phase microextraction Nanostructured polymer Polypyrrole Anilin 



The authors gratefully acknowledge financial support from Tarbiat Modares University

Conflict of interest

The authors have declared no conflict of interest.

Supplementary material

604_2015_1534_MOESM1_ESM.doc (430 kb)
ESM 1 (DOC 429 kb)


  1. 1.
    Yang J, Liu HC (2000) IR chemical sensor for detection of chlorinated anilines in aqueous solutions based on ATR waveguides coated with derivatized polystyrene. Analyst 125:1605–1610. doi: 10.1039/B004315J CrossRefGoogle Scholar
  2. 2.
    Voyksner RD, Straub R, Keever JT, Freeman HS, Hsu WW (1993) Determination of aromatic amines originating from azo dyes from chemical reduction combined with liquid chromatography/mass spectrometry. Environ Sci Technol 27:1665–1672. doi: 10.1021/es00045a025 CrossRefGoogle Scholar
  3. 3.
    Dalene M, Skarping G (1985) Trace analysis of amines and isocyanates using glass capillary gas chromatography and selective detection IV. Determination of free aromatic amines using nitrogen-selective detection. J Chromatogr A 331:321–330. doi: 10.1016/0021-9673(85)80038-8 CrossRefGoogle Scholar
  4. 4.
    Zhao L, Zhu L, Lee HK (2002) Analysis of aromatic amines in water samples by liquid–liquid–liquid microextraction with hollow fibers and high-performance liquid chromatography. J Chromatogr A 963:239–248. doi: 10.1016/S0021-9673(02)00544-7 CrossRefGoogle Scholar
  5. 5.
    Chiang JS, Huang SD (2008) Simultaneous derivatization and extraction of anilines in waste water with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometric detection. Talanta 75:70–75. doi: 10.1016/j.talanta.2007.10.036 CrossRefGoogle Scholar
  6. 6.
    Lewin U, Efer J, Engewald W (1996) High-performance liquid chromatographic analysis with electrochemical detection for residues of explosives in water samples around a former ammunition plant. J Chromatogr A 730:161–167. doi: 10.1016/0021-9673(95)01077-7 CrossRefGoogle Scholar
  7. 7.
    Adeyoju O, Iwuoha EI, Smyth MR, Leech A (1996) High-performance liquid chromatographic determination of phenols using a tyrosinase-based amperometric biosensor detection system. Analyst 121:1885–1889. doi: 10.1039/AN9962101885 CrossRefGoogle Scholar
  8. 8.
    Liu XJ, Chen XW, Yang S, Wang XD (2007) Continuous-flow microextration coupled with HPLC for the determination of 4-chloroaniline in Chlamydomonas reinhardtii. Bull Environ Contam Toxicol 78:368–372. doi: 10.1007/s00128-007-9200-0 CrossRefGoogle Scholar
  9. 9.
    EPA Method 1625, Fed. Reg. US Government Print Office, Washington, DC, 1994Google Scholar
  10. 10.
    EPA Method 8270B, Fed. Reg. US Government Print Office, Washington, DC, 1994Google Scholar
  11. 11.
    Sarfaraz-Yazdi A, Es’hagi Z (2006) Comparison of hollow fiber and single-drop liquid-phase microextraction techniques for HPLC determination of aniline derivatives in water. Chromatographia 63:563–569. doi: 10.1365/s10337-006-0801-2 CrossRefGoogle Scholar
  12. 12.
    Wang X, Fu L, Wei G, Hu J, Zhao X, Liu X, Li Y (2008) Determination of four aromatic amines in water samples using dispersive liquid–liquid microextraction combined with HPLC. J Sep Sci 31:2932–2938. doi: 10.1002/jssc.200800273 CrossRefGoogle Scholar
  13. 13.
    Börnick H, Grischek T, Worch E (2001) Determination of aromatic amines in surface waters and comparison of their behavior in HPLC and on sediment columns. J Anal Chem 371:607–613. doi: 10.1007/s002160101011 CrossRefGoogle Scholar
  14. 14.
    Diao CP, Wei CH (2012) Rapid determination of anilines in water samples by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to gas chromatography–mass spectrometry. Anal Bioanal Chem 403:877–884. doi: 10.1007/s00216-012-5907-9 CrossRefGoogle Scholar
  15. 15.
    Bhaskar M, Aruna P, Jeevan RJG, Radhakrishnan G (2004) β-Cyclodextrin-polyurethane polymer as solid phase extraction material for the analysis of carcinogenic aromatic amines. Anal Chim Acta 509:39–45. doi: 10.1016/j.aca.2003.12.015 CrossRefGoogle Scholar
  16. 16.
    Patsias J, Papadopoulou-Mourkidou E (2000) Development of an automated on-line solid-phase extraction–high-performance liquid chromatographic method for the analysis of aniline, phenol, caffeine and various selected substituted aniline and phenol compounds in aqueous matrices. J Chromatogr A 904:171–188. doi: 10.1016/S0021-9673(00)00927-4 CrossRefGoogle Scholar
  17. 17.
    Brede C, Skjevrak I, Herikstad H (2003) Determination of primary aromatic amines in water food simulant using solid-phase analytical derivatization followed by gas chromatography coupled with mass spectrometry. J Chromatogr A 983:35–42. doi: 10.1016/S0021-9673(02)01652-7 CrossRefGoogle Scholar
  18. 18.
    Figueiredo EC, Sparrapan R, Sanvido GB, Santos MG, Arruda MAZ, Eberlin MN (2011) Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma. Analyst 136:3753–3757. doi: 10.1039/C1AN15198C CrossRefGoogle Scholar
  19. 19.
    Vonderheide AP, Montes-Bayon M, Caruso JA (2002) Solid-phase microextraction as a sample preparation strategy for the analysis of seleno amino acids by gas chromatography-inductively coupled plasma mass spectrometry. Analyst 127:49–53. doi: 10.1039/B107781C CrossRefGoogle Scholar
  20. 20.
    Yuan B, Li F, Xu D, Fu ML (2013) Comparison of two methods for the determination of geosmin and 2-methylisoborneol in algae samples by stable isotope dilution assay through purge-and-trap or headspace solid-phase microextraction combined with GC/MS. Anal Methods 5:1739–1746. doi: 10.1039/C3AY26626E CrossRefGoogle Scholar
  21. 21.
    Mitani K, Kataoka H (2006) Determination of fluoroquinolones in environmental waters by in-tube solid-phase microextraction coupled with liquid chromatography–tandem mass spectrometry. Anal Chim Acta 562:16–22. doi: 10.1016/j.aca.2006.01.053 CrossRefGoogle Scholar
  22. 22.
    Silva BJG, Lanças FM, Queiroz MC (2008) In-tube solid-phase microextraction coupled to liquid chromatography (in-tube SPME/LC) analysis of nontricyclic antidepressants in human plasma. J Chromatogr B 862:181–188. doi: 10.1016/j.jchromb.2007.12.006 CrossRefGoogle Scholar
  23. 23.
    Shirakawa H, Louis E, MacDiarmid A, Chiang C, Heeger A (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 16:578–580. doi: 10.1039/C39770000578 CrossRefGoogle Scholar
  24. 24.
    Gou Y, Eisert R, Pawliszyn J (2000) Automated in-tube solid-phase microextraction–high-performance liquid chromatography for carbamate pesticide analysis. J Chromatogr A 873:137–147. doi: 10.1016/S0021-9673(99)01125-5 CrossRefGoogle Scholar
  25. 25.
    Mohammadi A, Yamini Y, Alizadeh N (2005) Dodecylsulfate-doped polypyrrole film prepared by electrochemical fiber coating technique for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. J Chromatogr A 1063:1–8. doi: 10.1016/j.chroma.2004.11.087 CrossRefGoogle Scholar
  26. 26.
    Wang YH, Li YQ, Feng JF, Sun C (2008) Polyaniline-based fiber for headspace solid-phase microextraction of substituted benzenes determination in aqueous. Anal Chim Acta 619:202–208. doi: 10.1016/j.aca.2008.05.003 CrossRefGoogle Scholar
  27. 27.
    Liljegren G, Nyholm L (2003) Electrochemically controlled solid-phase microextraction and preconcentration using polypyrrole coated microarray electrodes in a flow system. Analyst 128:232–236. doi: 10.1039/B211398H CrossRefGoogle Scholar
  28. 28.
    Tamer U, Yates B, Galal A, Gbatu T, LaRue R, Schmiesing C, Temsamani K, Ceylan O, Mark HB Jr (2003) Electrochemically aided control of solid phase micro-extraction (EASPME) using conducting polymer-coated solid substrates applicable to neutral analytes. Microchim Acta 143:205–215. doi: 10.1007/s00604-003-0056-7 CrossRefGoogle Scholar
  29. 29.
    Kalhor H, Alizadeh N (2013) Enhancing sensitivity of ion mobility spectrometry determination of aldehydes by in situ gas phase derivatization with dibutylamine. Int J Ion Mobil Spectrom 16:199–205. doi: 10.1007/s12127-013-0119-3 CrossRefGoogle Scholar
  30. 30.
    Wu J, Pawliszyn J (2004) Solid-phase microextraction based on polypyrrole films with different counter ions. Anal Chim Acta 520:257–264. doi: 10.1016/j.aca.2004.05.019 CrossRefGoogle Scholar
  31. 31.
    Wu JC, Pawliszyn J (2001) Preparation and applications of polypyrrole films in solid-phase microextraction. J Chromatogr A 909:37–52. doi: 10.1016/S0021-9673(00)01025-6 CrossRefGoogle Scholar
  32. 32.
    Eisert R, Pawliszyn J (1997) Automated in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal Chem 69:3140–3147. doi: 10.1021/ac970319a CrossRefGoogle Scholar
  33. 33.
    Ovais Aziz-Zanjani M, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169–1190. doi: 10.1007/s00604-014-1265-y CrossRefGoogle Scholar
  34. 34.
    Kataoka H (2002) Automated sample preparation using in-tube solid-phase microextraction and its application – a review. Anal Bioanal Chem 373:31–45. doi: 10.1007/s00216-002-1269-z CrossRefGoogle Scholar
  35. 35.
    Alhooshani K, Kim TY, Kabir A, Malik A (2005) Sol–gel approach to in situ creation of high pH-resistant surface-bonded organic–inorganic hybrid zirconia coating for capillary microextraction (in-tube SPME). J Chromatogr A 1062:1–14. doi: 10.1016/j.chroma.2004.10.103 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Hamid Asiabi
    • 1
  • Yadollah Yamini
    • 1
  • Fatemeh Rezaei
    • 1
  • Shahram Seidi
    • 2
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran
  2. 2.Department of Analytical Chemistry, Faculty of ChemistryK. N. Toosi University of TechnologyTehranIran

Personalised recommendations